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Air pollution affects the health and well-being of people and the environment and is considered  
to be the world’s single largest environmental health risk. As in other parts of the world, the  
countries of the Gulf Cooperation Council (GCC) are also facing the challenge of air pollution.  
Their geographical location makes them particularly prone to natural air pollution sources such  
as sand, dust, and sea salt.

Realizing the challenge, the GCC and the United Nations Environment Programme (UNEP)  
embarked on an ambitious project under the “Green Gulf Initiative: delivering on the environmental 
dimensions of the SDGs.” One of the aims of the initiative was to develop regional guidance for the 
collection of air quality (AQ) data. Consequently, a set of three guidebooks have been produced: 
(1) Air pollutant Emission Inventory Guidebook for the States of the Gulf Cooperation Council, and 
Introductory Guidance on Air Emissions Dispersion Modelling; (2) Air Quality Modelling and  
Forecasting Guidebook for the States of the Gulf Cooperation Council; and (3) Air Quality  
Monitoring and Data Management Guidebook for the States of the Gulf Cooperation Council.
    
The current guidebook presents widely used AQ models employing different modelling approaches 
for atmospheric and AQ processes, over length scales ranging from the microscale (1 km or less)  
to the global scale (more than 1000 km). To this end, distinctions are made between operational 
and experimental models, between dispersion,1 photochemical,2 and receptor3 models, between  
forecasting4 and assessment5 models, and between models adopted and models recommended  
by regulatory agencies such as the US Environmental Protection Agency (US EPA).6  

This guidebook also highlights recommendations made by regulatory agencies concerning  
AQ models, including how to evaluate them, data input and other important requirements.  
It is essential to point out that there is no single model that is optimal for use over a wide range  
of situations. This is, in part, because the complexity of meteorological phenomena requires  
different modelling approaches, depending on numerous conditions.  
 
This implies that AQ model selection is problem-dependent. Ideally, the optimal AQ model for  
a given situation is the one that most accurately represents atmospheric transport processes,  
pollutant dispersion, and chemical reactions in the subject domain.

Features and characteristics of widely used dispersion models, photochemical models, chemical 
forecasting operational models, and integrated operational models (that include dust modelling) 
are also presented in this guidebook. AQ models used to study pollution in GCC countries are also 
presented. Statistical AQ models are not covered in this document.

It should be noted that the guidelines in this guidebook are not legally binding but are intended 
to assist the GCC States in modelling the dispersion of air pollutants. Use of this guidebook will 
enable the GCC States to understand air pollution sources and make informed decisions for control 
and prevention. 

PREFACE
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1 Used to estimate the concentration of air pollutants at specific locations near emissions sources.
2 Used to study the impact of emission sources of both inert and chemically reactive pollutants over large spatial scale.
3 Used to quantify the source contribution to receptor concentrations.
4 Used to predict future air quality, starting with a set of initial conditions.
5 Used to assess time-averaged air quality at locations where observations are insufficient or lacking.
6 Used in conformity analysis and regulatory decisions concerning source permits and emission control requirements 
(US EPA, 2017). 
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1. Introduction to air pollution modelling and forecasting   
in GCC countries 
Air pollution is the presence of substances in the atmosphere that are harmful to humans  
and other living organisms, and damaging to human activities and the environment. 

Key pollutants include particulate matter (PM), carbon monoxide (CO), polycyclic aromatic  
hydrocarbons (PAHs), volatile organic compounds (VOCs), nitrogen oxides (NOₓ), ozone (O3),  
sulfur dioxide (SO2), and persistent organic pollutants (POPs) (Omidvarborna et al., 2018a).  
Air pollution is generated both by human (anthropogenic) activities and natural (or biogenic)  
processes. 

It should be noted that naturally occurring dust (including desert dust), albeit a nuisance, does  
not have a serious impact on human health (Environmental Protection, UK), unless inhaled at  
high volumes. However, in the presence of other particulate matter from anthropogenic sources  
(such as from fossil fuel combustion), desert dust particles are likely to entrap and carry these 
harmful particles downstream. In other words, the combined effect of natural and anthropogenic 
particles can be detrimental to human health (EEA, 2012). 

1.1   Climate effects of air pollution 

Air pollution has short-term regional climate effects (Moore, 2009). By changing the amount of 
reflected or absorbed sunlight, and by affecting various aspects of cloud formation, some types  
of air pollution cause the climate to cool (such as sulfates and nitrates), while others have a  
temporary warming effect that lasts a few days or weeks (such as black carbon). In particular, 
black carbon (also known as soot, a component of fine particulate matter (PM2.5)) is estimated  
to be responsible for approximately 15 per cent of the current excessive warming of global  
temperatures (Forster et al., 2007) and is considered the second biggest contributor to global 
warming after carbon dioxide (CO2) (Ramanathan and Carmichael, 2008). Hence, these so-called 
short-lived climate pollutants contribute to climate change (Smith et al., 2020).  

On the other hand, climate change can also impact air quality (AQ). In particular, global warming is 
likely to increase concentrations of ground-level ozone pollution since the rate of ozone formation 
increases with temperature. Although air pollution and climate change are closely related (Moore, 
2009), and although they share common natural and anthropogenic origins, they are usually  
treated as separate problems due to the large difference in the associated timescales.  
Hence, climate change is not discussed any further in this guidebook, which is dedicated to  
AQ assessment and limited to air pollutants causing a degradation of AQ.
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1.2   Causes of air pollution

Anthropogenic pollution is caused by human activities. It includes emissions from fossil fuel 
burning (including in transport and power generation), from oil, gas and chemical industries,  
construction and agriculture. These industries typical of rapidly growing economies are the  
primary causes of pollution in Gulf Cooperation Council (GCC) countries (Ebinger et al., 2011).  
The ensuing degradation in AQ in GCC countries is exacerbated by the hot and arid/semiarid  
climate, which in the absence of rain promotes the production and transport of aerosols, 
comprised mainly of dust particles (Al-Ghamdi et al., 2015; Reiche, 2010; Omidvarborna  
et al., 2018a).

1.3   Air pollution status and challenges in GCC countries
 
The recent and current status of pollution in the GCC countries can be assessed from a number  
of sources, including exposure studies. These studies reported significant SO2 emissions from  
refineries, power plants and desalination plants (Al-Rashidi et al., 2005; Al-Jahdali and Bisher, 
2008). Moreover, measured annual PM10 and PM2.5 concentrations in the GCC countries were 
found to significantly exceed World Health Organization (WHO) AQ standards (Lanouar et al.,  
2016; Brown et al., 2008; Munir et al., 2013; Habeebullah, 2014, 2016; Habeebullah et al., 2015).  

The high levels of PM are mainly related to the desert-type climate in GCC countries characterized 
by high concentrations of natural dust. Although considered a pollutant by the WHO, recent  
evidence shows that natural dust does not have a serious impact on human health, unless inhaled 
in large quantities (Environmental Protection, UK). Studies that thoroughly and conclusively report 
on the combined effect of natural dust and anthropogenic PM on human health are still lacking. 

Identification of the emission sources that contribute to the observed pollutant concentrations 
enables the implementation of emissions controls to mitigate harmful impacts.  
Source apportionment studies demonstrate that the major contributors to overall observed air  
pollution in the GCC countries are sand, dust (natural and anthropogenic), chemical and oil  
industries, and transportation activities (Omidvarborna et al., 2018a). Emission and dispersion 
modelling studies conducted by the environmental authorities of Bahrain, Kuwait, and Qatar in 
2012-2013 showed that the major emission sources (i) for PM10 and PM2.5 are transport and  
power plants, (ii) for coarse PM (>PM10) are re-suspended dust, and (iii) for CO, VOCs, NOₓ and 
SO2 are oil and gas industries and power plants (Naber, 2015).These studies also revealed that 
among the challenges facing the GCC countries are insufficient monitoring and lack of common  
AQ indices and data assimilation platforms.

A major source of PM2.5 emissions in the GCC is transported dust from natural sources. In a recent 
study by Ukhov at al. (2020), it was mentioned that the contribution of the non-dust component 
to PM2.5 is less than 25 per cent in the Middle East, which limits the impact of emission control on 
AQ. Alolayan et al. (2013) investigated the major sources of PM2.5 in the atmosphere of Kuwait and 
concluded that around 54 per cent of PM2.5 was transported sand dust.
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1.4   The way forward

In the margins of the 18th United Nations climate change meetingin Doha, Qatar in 2012,  
a conference was organized to address the environmental challenges in the GCC countries,  
including air pollution (Klemes et al., 2012). The conference identified as key factors the  
population growth, rapid urbanization, and transport (state of urban transit systems, traffic  
congestion, low fuel prices, large number of vehicles) (Elmi and Al-Rifai, 2012). Another challenge 
is accurately quantifying, especially in the smaller countries, the contributions from local emissions 
and those from transboundary transport. Therefore, to improve AQ, additional effort is needed to 
assess AQ at the urban and national scales by improving monitoring, modelling, and building  
emissions inventories (Omidvarborna et al., 2018a). 

1.5   Mitigation and prevention: air quality (AQ) management

Mitigating and preventing the adverse effects of air pollution requires an AQ management  
framework for the regulation and control of emissions, strong environmental policies (urban  
planning, siting) and guidelines and early warning systems to reduce people’s exposure 
to pollutants. A viable and successful framework requires pollution monitoring, public  
awareness-raising, the building of accurate and up-to-date emission inventories, source  
apportionment, and pollution forecasting over short and long length and timescales.  
Understanding of the transport processes and the underlying physico-chemical mechanisms,  
in addition to being able to explore what-if scenarios, are also key ingredients of an AQ  
management framework.

1.6   AQ modelling

In the absence of air pollution monitoring that sufficiently resolves time and space,  
AQ modelling emerges as an attractive solution that can predict the spatio-temporal distribution  
of several pollutants (Omidvarborna et al., 2018a). Nevertheless, validation of AQ modelling results 
still requires data from representative, high quality AQ monitoring. A diagram presenting the  
building blocks of an AQ forecasting/modelling system that is commonly deployed within an  
AQ management framework is shown in Figure 1.
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Figure 1 The building blocks of an aq forecasting/modelling system7.

7 AQI stands for air quality index
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2. Introduction to AQ models
A model is a (relatively) simplified mathematical description of a real system that captures key 
physical and chemical mechanisms at the temporal and length scales that are suitably selected   
to answer the scientific question raised. AQ models are used to forecast weather and AQ,  
to assess short- and long-term environmental impacts on domains of size ranging from the  
microscale (1 km or less) up to the global scale (over 1,000 km), and to identify solutions for  
the management of environmental problems (Harbawi, 2013). As depicted in Figure 2, an AQ  
model involves coupling the momentum and energy transport governing atmospheric dynamics 
(the meteorological model) with pollutant species transport (the chemical transport model), which, 
in addition to advection and mixing, incorporates chemical reactions. Representations of the initial 
and boundary conditions on the model grid are often enhanced by assimilating measurements.  
In addition, an AQ model requires input data on emissions, land use, topography, and obstructions. 
Due to the complexity of the systems being modelled, building accurate and cost-effective AQ 
models, which are being enabled by advances in computational power and speed, continues  
to be a challenging endeavor (Baklanov et al., 2013).

Figure 2. Elements of an AQ model for assessment and forecasting.

The coupling of the meteorological and chemical processes dictates an integrated modelling  
approach that can handle the transport of multiple pollutants over the spatiotemporal scales  
needed to identify control strategies to improve AQ. 

Choice of an AQ model depends on many factors including size of study domain and duration, 
availability of input data, and whether chemical reactions are relevant. These factors dictate, to a 
large degree, the type of AQ model to be used. To this end, AQ models are categorized based on 
chemical components, emission sources, modelling approach, and the time and length scales of 
the atmospheric and chemical processes involved. These categories are discussed below.  
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2.1   AQ monitoring vs. AQ modelling 

AQ monitoring is the systematic spatio-temporal collection of measurements to determine  
pollutant concentrations and other related quantities such as human exposure and fluxes to  
surface (land or water). AQ measurements ought to be continuously collected, in a spatially  
representative manner, to monitor and characterize criteria pollutant concentrations in the  
atmosphere. Due to limitations in their spatial coverage, AQ measurements are rarely sufficient  
to enable acceptable description of the spatial concentration fields, or to assess the impact of  
emission sources on ambient air-quality (US EPA, 2017). Where/when measurements are not  
sufficient, models are used to calculate the spatio-temporal distributions of pollutant  
concentrations levels and deposition fields (Moussiopoulos et al., 1996). 

When used complementarily to AQ measurements, AQ models allow more accurate assessment. 
Measurements should also be used to validate and even tune a model thereby reducing  
uncertainties that may arise from uncertainties in the input data and/or the model itself.  
In addition, an AQ model provides a valuable means for interpolating measurements onto  
locations where no measurements are available. 

AQ models can be deterministic,8 statistical or hybrid. Statistical and hybrid AQ models are  
not covered in this document.

2.2   General description of deterministic AQ models

Deterministic AQ models simulate pollutant dispersion and reactions in the atmosphere by  
solving, mostly numerically, the mathematical equations describing the laws governing the  
associated physical and chemical processes (Gea et al., 2017). As depicted in Figure 2,  
these models take as input the emission sources (such as emission rates and stack heights),  
a geometrical representation of the domain, in addition to meteorological fields (wind velocity, 
temperature and pressure). The CTM within estimates the atmospheric levels of primary pollutants 
and in some cases the levels of secondary pollutants. As such, in contrast to statistical methods, 
deterministic AQ models describe, quantitatively, the causal relationship between meteorology, 
atmospheric concentrations, emissions, and deposition, among other factors. Choice of the type  
of the deterministic AQ model is decided by the field of application, geographical domain, time 
periods of interest, desired spatial and temporal resolutions, and choice of the level of detail in 
modelling chemical processes (Moussiopoulos et al., 1996).  

2.2.1   AQ assessment vs. AQ forecasting
Deterministic AQ modelling can be broadly divided into two main categories: Air Quality  
assessment and Air Quality forecasting. AQ assessment entails inferring the time-averaged air 
quality at locations where observations are insufficient or lacking. Time averaging can be done on 
a monthly, seasonal or annual basis. In these studies, maps of pollutant concentrations enable the 
identification of hot zones, and when coupled with population patterns, provide valuable insights 
about exposure. In addition, some of the modelling tools allow the exploration of what-if scenarios, 
thus providing an effective framework for mitigation, informing policymakers, and planning.  
On the other hand, AQ forecasting entails the prediction of future AQ, starting with a set of  
initial conditions. An accurate and reliable AQ forecast is a key component of an AQ management 
system that (i) provides timely health alerts to vulnerable population groups, (ii) supplements  
traditional emission control programmes, (iii) empowers operational planning, and (iv) enables 
more effective emergency response.

8 The literature often refers to physically based models as deterministic models. While purely statistical models do 
not rely on any physical modeling, physically based models may be purely deterministic or may have a statistical 
component. An example is modeling the mixing coefficient using a Gaussian probability distribution. 
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Both assessment and forecasting models require meteorological data. AQ forecasting requires  
meteorological forecasts that predict the time-dependent thermo-physical properties of air that 
drive and characterize the local transport of pollutants. Thus, the accuracy of the AQ forecast 
depends, in part, on the reliability of the weather forecast. To produce the most accurate weather 
forecast possible, the output of several forecasting models is typically combined with local  
experience and knowledge. Thus the most accurate AQ forecast possible is one that follows a  
similar approach.

2.3   What are deterministic AQ models useful for?

Deterministic AQ models enable atmospheric science and AQ management (see Figure 1)  
by providing a 360-degree description of the AQ problem, including analysis of factors and  
causes, assessment of the relative importance of relevant processes, identification of patterns,  
investigation of what-if scenarios, and assessment of proposed mitigation/control strategies, all of 
which feed into developing policies and strategies for efficient air pollution control (Nguyen, 2014). 

Deterministic AQ Models are widely used by agencies, such as the United States Environmental 
Protection Agency (US EPA), tasked with controlling and regulating air pollution. These models  
enable these agencies to identify the contributing sources and to design effective mitigation  
strategies. AQ models are also commonly used during the permitting process to check whether or 
not pollutants from a new source result in ambient levels in excess of AQ standards. In the absence 
of any practical alternatives, AQ models are used as predictive tools to assess the effectiveness  
of (and decide on) new regulatory programmes (e.g. for source permits and emission control  
requirements) in reducing human and environmental exposure (US EPA, 2017). The applications  
of deterministic AQ Models are summarized in Figure 3 (Collett and Oduyemi, 1997).

Figure 3. Applications of deterministic AQ models.
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2.4   Suitability of deterministic AQ models for the assessment of source impacts

The following factors should be considered when assessing the suitability of a deterministic  
AQ model for assessing source impacts on the ambient air quality (US EPA, 2017). 
Terrain and flow-field complexity: AQ models are commonly more accurate for terrains with 
smoother spatial transitions in topography and land use. These simple terrains translate into  
more uniform meteorological conditions, which allow simpler AQ models to yield representative  
predictions. Adequate AQ models for complex environments are available but are more  
computationally expensive, require in-situ measurements, and in many cases involve adjustment  
or calibration of the sub-models. Validation of AQ models, especially when used for complex  
environments, is crucial to building confidence in their predictions.
Accuracy and level of detail of input (meteorological, emissions, and AQ data): availability of the 
data required for an AQ model is a deciding factor on whether the model can be used. In addition 
to terrain and meteorological data, detailed spatial and temporal representation of the emission 
sources enables the model to more accurately assess the source impact.  
How atmospheric processes are modeled: AQ models that incorporate complex and diverse  
atmospheric processes allow testing for a variety of interesting meteorological conditions,  
which ultimately enables effective evaluation of various control strategies.
Available resources. 
Technical competence of the user.

2.5   Preparation phase for model selection

To identify the optimal modelling approach, it is recommended to follow the steps suggested  
by the European Environment Agency (EEA, 1998, Ch. 5):

1. Define the pollutant, and the output quantity to be modelled (concentration fields, or (spatial 
maximum) concentrations in streets or near point sources, usually for concentration statistics, 
for instance annual average, 98 percentile of hourly values ...).

2. Define the time resolution needed (the averaging time for the concentration).
3. Define the “model output area” for which the model calculations should be made (usually a 

zone or agglomeration) and the spatial resolution needed.
4. Define the accuracy in the output quantity that is required.
5. Determine the model area (this may extend considerably beyond the output area, particularly  

in case of pollutants with long range transport).
6. Investigate the availability of emission data (in the model area).
7. Investigate the availability meteorological and topographical data (in the model area).
8. Investigate available AQ data (in the model output area).
9. Check available computer resources.
10. Select models that are suitable for the pollutant (taking into account its chemistry and  

deposition), for the relevant output quantity, with the appropriate resolution in space and time, 
within the required accuracy, and for the area under consideration (taking into account its  
topography and meteorological characteristics).

11. Consider the computer requirements of the model(s); if these surpass available computer  
resources, reconsider model choice.

12. Reconsider the requirements on emission and meteorological data of the model(s) selected 
and, if necessary, collect more detailed input data (or reconsider the model choice).

13. Prepare input data.
14. Run the model.
15. Compare results to available AQ data and critically evaluate.
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3. Categories of deterministic AQ models
Deterministic AQ models can be categorized in different ways. We present below categorizations 
based on (i) type of chemical components, (ii) type of emission sources, (iii) the modeled physics 
(model type), and (iv) the temporal and spatial scales (EEA, 1998). 

3.1   Categorization based on type of chemical components

Based on the type of components and chemical reactions involved, deterministic AQ models can  
be non-reactive or reactive. Non-reactive models are applied to pollutants such as CO and SO2 
since their chemical reactions can be described in a simple way using pollutant half-life or decay  
parameters (Nguyen, 2014). In contrast, reactive models address complex multispecies reaction
mechanisms common to atmospheric photochemistry that involve pollutants such as NO, NO2,  
and O3 (Conti, 2017). 

3.2   Categorization based on type of emission sources

Based on the geometric representation of the emission sources, deterministic AQ models can be 
further divided into three main categories (Figure 4) (Harbawi, 2013): 

Figure 4. emission sources used to categorize AQ models.

• Point source AQ models used for industrial sources
• Line source AQ models used for airport and roadway air dispersion modelling
• Area source AQ models used for forest fires, dust storms, or coarse emission  

representation of large urban or industrial areas
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3.3   Categorization based on modelling approach 

The most used AQ models are the box model, Gaussian plume model, Lagrangian models,  
and Eulerian (grid-based) models (Figure 5) (Gea et al., 2017; US EPA, 2017). 

Figure 5. AQ modelling approaches: (a) box model, (b) gaussian plume model,  
(c) eulerian model, and (d) lagrangian model.

3.3.1   Box model
The Box model (Lettau, 1970) is the simplest type of AQ model. It is based on the mass  
conservation of pollutant inside a fixed box, which generally represents a large area such as a  
city (Zannetti, 1990). The model assumes that the air pollutants inside the box are homogeneously 
distributed and uses this assumption to estimate the average pollutant concentrations anywhere 
within the box. Although useful in some cases, this model is, however, very limited in its ability to 
accurately predict the dispersion of air pollutants because the assumption of homogeneous  
pollutant distribution is overly simple and unrealistic (Gea et al., 2017). The box modelling approach 
is well discussed in Lettau (1970); Derwent et al. (1995); Middleton (1995, 1998); Sportisse (2001); 
Cheng et al. (2006); Johnson et al. (2011) and Harbawi (2013).
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3.3.2   Gaussian plume model
The Gaussian plume model is mostly used for predicting dispersion in the near-field of continuous  
air pollution plumes originating from ground-level or elevated sources. The Gaussian model is  
based on the assumption that all model inputs are constant throughout the domain over the model  
time step, resulting in a plume concentration, at each downwind distance, of independent Gaussian 
distributions both in the horizontal and in the vertical (Moussiopoulos et al., 1996; US EPA, 2017),  
as depicted in Figure 5-(b). The species concentration is defined as being proportional to the  
emission rate of the source, diluted by the wind velocity at the source of emission. The dispersion  
behavior of a pollutant is determined by the standard deviations associated with the Gaussian
distribution function. These standard deviations are typically functions of atmospheric stability,  
localized turbulence and distance downwind from the source (Collett and Oduyemi, 1997). 

The Gaussian plume model is globally used as a standard technique to calculate the stack height 
required for the granting of permits (Daly and Zannetti, 2007) and is considered as the most  
accepted computational method to estimate the concentration of a pollutant at a certain point  
(Harbawi, 2013). The Gaussian plume model still suffers from severe limitations that restrict its  
applicability and accuracy, and as such, it is inaccurate in real-time response situations (Bluett et  
al., 2004). These restrictions render the model inaccurate (i) at large distance from the source  
(more than 10 km), (ii) for unsteady conditions (emission source and/or meteorological), (iii) over 
complex terrains, and unsuitable for modelling complex events such as inversion breakup  
fumigation events and stagnation events, and (iv) when pollutant deposition and chemical  
reactions need to be included.

The Gaussian model has been the subject of extensive research aimed at expanding it applicability 
to complex situations of the real world (Zannetti, 1990). 
  
To handle non-stationary and non-homogeneous conditions, the segmented plume approach  
(Chan and Tombach, 1978; Chan, 1979) and the puff approach (Lamb, 1969; Roberts et al., 1970) 
were proposed to handle pseudo steady-state conditions. Both methods break up the plume into a 
series of independent elements (segments or puffs) that evolve in time as a function of temporally 
and spatially varying meteorological conditions (Zannetti, 1990).  
 
Moreover, modelers have modified the Gaussian equation to consider total or partial reflection at  
the surface and at the top of the atmospheric boundary layer. Furthermore, Gaussian models have 
been modified to account for complex terrain. In addition, a simplified version of the Gaussian  
model – the Gaussian climatological model – can be used to calculate long-term averages  
(e.g. annual values) (Moussiopoulos et al., 1996).
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3.3.3   Eulerian model
Most current regional photochemical models are Eulerian models, which are arguably the most 
powerful among the different model types as they involve the least restrictive assumptions.  
Eulerian models are, however, the most computationally intensive. Eulerian models solve a finite 
approximation of the equations governing the physics and chemistry of atmospheric processes  
by dividing the modelling region into a large number of cells (see Figure 5-(c)), horizontally and  
vertically, which interact with each other to simulate the various interactions that affect the  
evolution of pollutant concentrations, including chemistry, diffusion, advection, sedimentation  
(for particles), and deposition (both wet and dry). 

As depicted in Figure 5-(c), Eulerian dispersion models use a fixed three-dimensional Cartesian 
grid as a frame of reference. The flow within the domain is typically turbulent (Brown, 1991) and is 
mathematically described by expressing any dependent variable as the sum of a locally average 
component and a fluctuating component (Collett and Oduyemi, 1997). Advanced Eulerian models 
include refined sub-models for the description of turbulence (e.g. second-order closure models 
and large-eddy simulation models) and other microscale physics. 

Input data requirements for Eulerian models include temporally and spatially resolved fields of 
emissions (resolved by species), meteorology (e.g. wind velocities, temperatures, solar insolation, 
etc.), topographic features, initial and background pollutant concentrations (for initial and  
boundary conditions), and domain definition (Russel, 1997). 

3.3.4   Lagrangian model 
Lagrangian models are used to determine time-dependent near- and far-field impacts from a  
limited number of sources (US EPA, 2017). In these models, Lagrangian fluid particles (or segments 
or puffs), periodically injected from emission sources into the domain, are advected by the  
instantaneous flow field, as depicted in Figure 5-(d). The particles, which serve as a discretization 
of the pollutant density distributions in the domain, carry their respective shares of the masses of 
the different pollutants, in addition to other integral quantities such as the internal energy, which 
enables simulation of the dynamics of the associated physical parameters. Because it is unsteady, 
the Lagrangian model (sometimes referred as the Lagrangian puff model), in contrast to the 
Gaussian plume model, allows for time-varying emissions and meteorological conditions. 

Particle motion in Lagrangian models can be produced by both deterministic velocities and 
semi-random pseudo-velocities generated using Monte Carlo techniques. Hence, turbulent  
transport is accounted for by superimposing a pseudo-random velocity fluctuation on the  
locally averaged wind velocity (Moussiopoulos et al., 1996). As the centre of mass of a particle  
is advected by the local wind velocity, diffusion is simulated by an additional random translation  
corresponding to the atmospheric diffusion rate (Russel, 1997). The Lagrangian model then  
calculates the air pollution dispersion by computing the statistics of the trajectories of a large  
number of pollution plume parcels (Gea et al., 2017). 

Lagrangian models require spatially and temporally resolved wind fields, mixing-height fields,  
deposition parameters, and data on the spatial distribution of emissions (Russel, 1997).
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Lagrangian modelling possesses several advantages over Eulerian modelling (Pearson 2001;  
Gertler 2006; Harbawi, 2013). These include the affordable computational cost, seamless  
numerical modelling of the advection term,9 and the ability to trace particles back to the source, 
thus enabling quick evaluation of the effect of emissions inventories on pollutant levels.  
Lagrangian models, however, still face the grand challenge of handling complex chemistry by  
accurate modelling of the chemical interactions between different particles. 

In particular, secondary pollutant formation requires adequate spatial and temporal representation 
of involved species in the background atmosphere, such as oxidants and ammonia (US EPA, 2017 
and references within). As such, Lagrangian models have experienced very limited recent use in 
photochemical modelling, and have been predominantly used for relatively inert pollutants, with 
some capabilities for deposition.

In contrast, the main advantage of the Eulerian models is the well-defined three-dimensional  
continuous numerical representation of the domain which enables numerical formulation of  
complex interactions. This advantage rendered Eulerian models as the models of choice for  
studying air pollution problems on the regional scale. A more detailed explanation of the  
advantages and disadvantages of various AQ models can be found in Gertler (2006).

A comparison between the Gaussian plume, Lagrangian and Eulerian models is presented  
in Table 1.

Model Category Gaussian Plume Lagrangian (puff)

Steady/Unsteady Steady Unsteady Unsteady

Temporal scale Hours to year Hours to year

Spatial scale Local to global scales

Eulerian
(grid-based)

Chemical
reactions

Most convenient 
applications

Major
disadvantages

Some difficulty in 
simulating dispersion 

at low wind speeds

Non-reactive 
pollutant assessment 

for regulatory 
purposes at local 

scale (<50 Km)

Limited reaction, 
usually accounted for 
by a decay parameter

Limited dry 
deposition

Local and 
urban scales

Local to continental 
scales

Limited dry and 
wet deposition

Limited reaction 
within each puff; 
only first order 

chemistry

Pollutant transport
 in complex terrain; 

back-trajectory analysis 
to determine the origin 

of air masses

Difficult to model
reactive pollutants

Numerical diffusion; 
High computational 

cost

Long range 
transport 

with complex 
chemical reactions

Complex, 
multispecies 

reactions; second 
order and higher 

chemistry

Sophisticated dry 
and wet deposition

Hours to century

Pollutants 
deposition

Table 1. Comparison between gaussian plume, lagrangian puff and eulerian models.

9 One of the key challenges in Eulerian methods has been the accurate and stable modeling
of the nonlinear term    • ∆    , where    is the velocity vector field. →u →u →u
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3.4   Categorization based on temporal and spatial scale

AQ models study pollutant transport in the study domain with spatial and temporal resolutions  
dictated by the problem statement. The spatial and time scales required to resolve the transport  
of mass, momentum, and energy, in addition to those governing chemical reactions, are the major 
deciding factor for what air-quality model to choose. Pollutants are advected according to local  
wind velocity, which is determined by the physical conservation laws (mass, momentum and 
energy) governing atmospheric processes. In addition, the spatio-temporal evolution of the 
pollutant concentration fields is governed by mixing induced by turbulence and chemical reactions. 

Presented below is a discussion of the key physical mechanisms that characterize the atmospheric 
processes at different length scales, and as such deciding the complexity of the underlying model  
for prediction of the flow field. What follows is a discussion of the chemical reactions characterizing 
the air-quality processes at different length scales, and as such deciding the complexity of the  
underlying model for accurate representation at the desired length and time scales. 

3.4.1   Scales of atmospheric processes
AQ models are decisively influenced by atmospheric processes, which are commonly classified  
with regard to their spatial scale. Orlanski (1975) recommends distinguishing between atmospheric 
processes at the macroscale (more than 1,000 km), mesoscale (between 1 km and 1,000 km) and  
microscale (less than 1 km) (Figure 6). 

3.4.1.1   Macroscale processes
At characteristic length scales exceeding 1,000 km (which is of the order of magnitude of Earth’s 
radius), atmospheric flow is mainly associated with synoptic phenomena, i.e. the geographical  
distribution of pressure systems. The synoptic flow field that governs macroscale atmospheric  
processes evolves as a result of the balance between the pressure forces and the Coriolis force. 
While the pressure is hydrostatic along the radial direction, as can be inferred by scaling of the  
velocity components, the spatial variation of the pressure in the longitude-latitude plane is  
dictated by large-scale in-homogeneities of the surface energy balance. Global and the majority  
of regional-to-continental scale dispersion phenomena are strongly tied to macroscale atmospheric 
processes (Moussiopoulos et al., 1996).

3.4.1.2   Mesoscale processes
The flow configuration in the mesoscale (characteristic lengths between 1 and 1,000 km) depends  
on both hydrodynamic effects (e.g. flow channeling, roughness effects) and in-homogeneities of  
the energy balance. When the synoptic forcing is weak (i.e. in the absence of ventilation), pollutant  
dispersion is strongly governed by thermal effects.

Mesoscale atmospheric processes affect primarily local-to-regional scale dispersion phenomena,  
for which urban studies are the most important examples. The description of such phenomena  
requires, even for practical applications, the utilization of fairly complex modelling tools  
(Moussiopoulos et al., 1996) since mesoscale meteorological models should be capable of  
simulating local circulation systems, such as sea and land breezes.
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3.4.1.3   Microscale processes
In general, air flow is very complex at the microscale (characteristic length less than 1 km),  
as it depends strongly on the detailed surface characteristics (e.g. the form of buildings, and  
their orientation with regard to the wind direction). Although thermal effects may contribute to  
the generation of these flows, they are mainly determined by hydrodynamic effects (e.g. flow 
channeling, roughness effects) which have to be described well in an appropriate simulation model. 
In view of the complex nature of such effects, local scale dispersion phenomena (which are to a 
large extent associated with microscale atmospheric processes) are mainly described with robust 
“simple” models in the case of practical applications, such as street canyon models  
(Moussiopoulos et al., 1996).

3.4.2   Scales of AQ processes
Atmospheric air pollution is a multiscale problem ranging from the microscale (e.g. urban heat  
islands), to the mesoscale (e.g. regional pollutant transport, dust storms), to the macroscale  
(e.g. global warming, ozone depletion).

Based on their spatial scale, AQ models can be divided into fourcategories (Figure 6): (i) global 
scale, (ii) regional-to-continental scale, (iii) local-to-regional scale, and (iv) local scale air pollution 
models (Moussiopoulos et al., 1996). Table 2 lists the most common model type, meteorological 
input, and physical/chemical processes used for AQ assessment at various scales.

Figure 6. Scales of AQ processes.
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3.4.2.1   Global-scale air pollution models
Global-scale air pollution models (over 10,000 km) are used to predict, on the global scale,  
the chemical composition10 of the troposphere and study its interactions with the overlying  
stratosphere. In addition, these models are often used in climate studies to assess long-term  
future impact. Large-scale models also provide smaller-scale models with the required boundary  
conditions to enable prediction at the smaller scale (Moussiopoulos et al., 1996).

Several three-dimensional global- or hemispheric-scale models have been developed.  
These include MOCAGE, SILAM, and NAAPS. In these models, physical processes that take place 
at smaller length scales (such as cloud processes, convective mixing, transport between the 
boundary layer and the free troposphere, exchange between stratosphere and troposphere) are 
modeled on a sub-grid scale using parameterizations (Donnell et al., 2001). Meteorological input  
to these large-scale pollution models is provided by general circulation models (GCMs) or by  
assimilating observations.

3.4.2.2   Regional-to-continental scale air pollution models
Regional-scale models (250-10,000 km) emerged as essential tools to study the formation,  
transport and deposition of key pollutants (e.g. ozone, PM, acids) on the regional scale. In addition 
to aiding understanding of the underlying physico-chemical processes and their impact, these 
models enable quantification of (i) atmospheric pollution levels and their response to emission 
controls, (ii) transboundary fluxes, (iii) deposition to ecosystems and (iv) the relationship between 
emissions and depositions (Russel, 1997).

Regional-to-continental models, such as the EMEP Unified, WRF-Chem and the REMSAD models, 
resolve the spatial domain with grid spacing of 10-150 km, and cover time periods of up to two 
years. Both Lagrangian (single- and two-layer) and Eulerian dispersion schemes are used  
(Moussiopoulos et al., 1996). As their input, these models require meteorological fields, emissions 
data from emissions inventories, land use and topography data from GIS, in addition to  
concentrations of pollutants at the boundary (boundary conditions). Meteorological fields are 
usually provided by a meteorological preprocessor, such as Numerical Weather Prediction (NWP) 
models. Due to the challenges associated with building an accurate and up-to-date emissions 
inventory, emissions remain among the largest sources of uncertainty in the input.

10 Focusing primarily on methane (CH4), CO, NOₓ, non-methane hydrocarbons (NMHC), chlorofluorocarbons (CFC),  
hydrofluorocarbons (HFC), hydro-chlorofluorocarbons (HCFC) and sulphur compounds (SO2, aerosols, dimethyl sulphide 
(DMS), hydrogen sulphide (H2S)), together with their combined effects on the concentrations of O3 and the oxidizing  
capacity of the atmosphere (defined largely by the concentrations of O3, hydroxyl (OH) and hydrogen peroxide (H2O2).
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3.4.2.3   Local-to-regional scale air pollution models
At the local-to-regional, or urban, scale (1-300 km), describing the turbulent flow field arising  
from the complex interactions between the atmospheric boundary layer flow and obstacles  
(e.g. buildings) poses a challenge to pollution models at this scale (Salim, 2011; Easom, 2000;  
Lateb et al., 2015). These interactions may lead to poor ventilation in parts of the domain, resulting 
in entrapment of pollutants, and at the other extreme may lead to strong ventilation resulting in fast 
removal of the pollutants. For an overview of these interactions in cities, see Deck (2005), Chang 
and Meroney (2001), Easom (2000) and Lateb et al. (2015).

One approach, albeit an expensive one, to studying pollutant dispersion in an urban environment is 
to carry out measurements in the whole domain. Alternatively, the Gaussian-based semi-empirical 
models can be used for simple problems of steady flow over a flat unobstructed terrain.  

For more complex flow configurations, Mesoscale AQ models (Lagrangian and Eulerian) that solve 
the equations governing species transport are used (EEA, 1998). Mesoscale air pollution models  
require several types of data input including geographic data, meteorological data and emission 
data. All types of emission sources (point, line, area) are used, where it is common to combine 
many small sources into a single area source. If the emitted pollutants react over the desired  
timescale of the study, chemical modules, varying from a simple single reaction (SO2 into sulfates) 
to more complex photochemical reactions (ozone and NOₓ) are used.

The grid spacing in mesoscale AQ models is typically 4-5 km. Compared to regional-scale models 
(grid spacing of 18-100 km), this low resolution enables mesoscale models to capture variation in 
concentrations in regions with intense emissions and to study the formation of secondary  
pollutants (such as ozone) via nonlinear chemical reactions with reasonable accuracy.  

Although this finer mesh is crucial to address non-linear pollutant formation in cities and  
near sources, coarser mesh is acceptable in rural areas and far from sources and allow great  
computational savings. This led to the development of a new technique called nested and/or  
multiscale modelling that enables the use of fine grid resolution inside cities and coarse grid  
resolution in rural area. Multiscale models (nested models) are considered the current  
state-of the-science for modelling highly reactive pollutants. 

Moreover, they are extensively used to provide boundary conditions to finer resolution models.  
In this regard, several levels of nesting can be applied (Figure 7). 
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Figure 7. Nesting involves propagating the solution between a coarse grid (grid 1) and a fine grid (grid 2), 
and between the fine grid (grid 2) and a finer grid (grid 3). The coarse grid cell size is similar to the grid size 

used in synoptic solvers (0.5-1 degree). The grid size in the finer grid can go as low as 3 km.

Widely known air pollution models to address problems at the local-to-regional scale include 
HYPACT, UDM-FMI, DISPERSION, EURAD and UAM-V.

3.4.2.4   Local-scale air pollution models
Over scales of 1-1,000 m, atmospheric pollution models are based on the Gaussian  
distribution. These models, which are widely used for regulatory and planning purposes, 
evolved to meet increasingly stringent and detailed AQ guidelines. The first local-scale 
Gaussian models were based on the Pasquill-Gifford classes that categorize atmospheric 
turbulence into six stability classes. More recently, models based on boundary layer  
parameterization have been developed. These models use meteorological data (such as 
wind speed and direction, ambient temperature) and surface characteristics (such as surface 
roughness, Bowen ratio, and albedo) to calculate some atmospheric boundary layer scaling 
parameters (such as friction velocity, Monin-Obukhov length, convective velocity scale,  
temperature scale, both the shear- and convection-driven mixing heights). These scaling 
parameters are then used to construct the temperature and velocity similarity profiles across 
the atmospheric boundary layer.

Widely known air pollution models for problems in the local scale include AERMOD,  
UK-ADMS, OCD, ISC3, CTDMPLUS, CAR-FMI, CAL3QHC, OSPM and GRAL.
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Description Global

Meteorology 

PM₁₀ 

PM₂.₅ 

NO₂

O₃ Same as NO₂ Same as NO₂ Same as NO₂ Same as 
NO₂

SO₂

Local (1-1,000 m) 
Urban/Local 
to regional 

(1 – 300 km)¹¹  

 

Regional/continental 
(25–10,000 km) 

Gaussian models;
Statistical models;

Lagrangian 
particle models

Gaussian models;
Eulerian chemical 
transport models;

Lagrangian particle 
models 

Eulerian chemical 
transport models;

Lagrangian chemical 
models 

Eulerian
models

Local 
meteorological 
measurements;
diagnostic wind 

field models

Mesoscale 
meteorological 

models;
localized 

meteorological 
measurements; 

diagnostic 
wind field models 

Synoptic/mesoscale 
meteorological

models

General 
circulation 

models

No chemical 
processes 

No chemical 
processes 

No chemical 
processes 

Dry and wet 
deposition;
secondary 

inorganic particle 
formation

Dry and wet 
deposition;

secondary inorganic 
and organic particle 

formation

Same as 
regional-

continental

Model type 

Simple 
photo-oxidant 

chemistry

Dry and wet 
deposition;
secondary 
inorganic 

particle formation

Dry and wet 
deposition;

secondary inorganic 
and organic 

particle formation

Same as 
Regional-

continental

Same as 
Regional-

continental

Same as 
Regional-

continental

Dry and wet 
deposition; 

Full photo-oxidant 
chemistry

Dry and wet 
deposition; 

Limited 
photo-oxidant 

chemistry

Dry and wet 
deposition; 
secondary 
inorganic 

particle formation

Dry and wet 
deposition; 

secondary inorganic 
particle formation; 
full photo-oxidant 

chemistry

11 Some models (e.g., CMAQ) can also treat PM2.5, NO2, O3, SO2, and secondary organic components with full  
photo-chemical reactions at this scale.

Table 2. Model type, meteorological input, and physical/chemical processes  
for AQ assessment at various scales.
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4. Deterministic AQ models
Worldwide, a number of AQ models have been developed and applied in the fields of AQ  
management and atmospheric science research. These models mainly fall into three categories 
(Nguyen, 2014): 

• Dispersion models, typically used to estimate the concentration of air pollutants at specific 
locations (receptors or targets) near emissions sources 

• Photochemical models, typically used to study the impact of emission sources by estimating 
pollutant concentrations and deposition of both inert and chemically reactive pollutants over 
large spatial scales 

• Receptor models, observational techniques which use the physico-chemical characteristics  
of gases and particles measured at source and receptor to quantify the source contribution  
to receptor concentrations (source apportionment)

4.1   Dispersion models

4.1.1   What are dispersion models? 
Dispersion modelling numerically solves the mathematical equations that describe atmospheric 
processes to simulate the dispersion of air pollutants originating from different emission sources 
(line, point, and area sources) at both local and regional scales (Nguyen, 2014; Irwin, 2014;  
Pan et al., 2014; Batterman et al., 2010), yielding accurate quantification of the sources’ impact  
on the distribution of spatio-temporal concentrations of pollutants (Gea et al., 2017).

4.1.2   What are dispersion models used for?
Based on emissions and meteorological inputs, a dispersion model can be used to predict  
concentrations of pollutants at selected downwind receptor locations. As such, dispersion  
models can be used to determine compliance with national ambient air quality standards.  
Dispersion models are widely used in the risk assessment of hazardous effects of air pollution on 
humans and the environment (Van Leuken et al., 2016) and the appraisal of potential mitigation  
and control strategies. Other applications of dispersion modelling include:

• Assessment of emission compliance with guidelines, criteria, and standards for clean air
• Evaluation of the environmental impact of new plants
• Determination of appropriate chimney heights
• Management of existing emissions
• Planning of air monitoring networks
• Identification of main sources of air pollution
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4.1.3   Types of dispersion models
As discussed in Chapter 3, there are different types of dispersion model with specific requirements 
for different spatial scales and deficiencies with respect to particle dispersion and aerosol  
dynamics within those scales. The most used dispersion models, presented in 3.3, are Box,  
Gaussian plume, Gaussian puff, and the more detailed Eulerian and Lagrangian models, which can 
be applied for simulation of air pollutant concentrations from different emission sources (line, point, 
and area sources) at both local and regional scales.

4.1.4   Input data requirements
The required inputs of data in dispersion models include (Turner, 1970; Harbawi, 2013): 

• Meteorological data such as wind speed and direction, atmospheric stability, ambient air  
temperature, and mixing height

• Source-emissions parameters including source location, height and diameter of the stack,  
exit velocity, exit temperature, and pollutant emission rate

• Land use and terrain elevations at the receptor location 
• Location, height, and width of any obstructions in the path of the emitted gases plume
• Ambient or background concentrations of pollutants
 
4.1.5   How dispersion models are used
In many cases, a screening model is first employed to provide conservative estimates of the  
AQ impact of a specific source (or source category) assuming preset worst-case meteorological  
conditions, as depicted in the flowchart in Figure 8. This simple model can indicate whether  
more detailed modelling is needed based on whether the contribution of the sources to ambient  
concentrations is in excess of relevant AQ standards or allowable concentration increments. 
Detailed dispersion modelling involves numerically solving the laws that govern the physical and 
chemical atmospheric processes in a higher level of detail. Refined dispersion models also require 
more detailed and precise input data. As a result, they provide a more refined and, at least  
theoretically, more accurate estimate of source impact and the effectiveness of control strategies 
(Nguyen, 2014).

Figure 8. A screening model is commonly used to decide whether 
a refined dispersion model is needed.
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When the application involves using unsteady dispersion models for long-range transport  
assessments or assessments where the transport winds are complex, use of the output from  
prognostic mesoscale meteorological models is encouraged. Some diagnostic meteorological  
processors are designed to appropriately blend available comparable meteorological observations, 
local site-specific meteorological observations, and prognostic mesoscale meteorological data, 
using empirical relationships, to diagnostically adjust the wind field for mesoscale and local-scale 
effects. These diagnostic adjustments can sometimes be improved using strategically placed 
site-specific meteorological observations (Nguyen, 2014). The meteorological data used as input  
to a dispersion model should be selected on the basis of spatial and temporal representativeness.  
For a more detailed discussion, refer to Gea et al. (2017).

4.1.6   How to choose a dispersion model
To choose the most suitable dispersion model for a given application/question, the following  
considerations should be considered (Bluett et al., 2004; Harbawi, 2013): 

• The complexity of dispersion (e.g. terrain and meteorology effects)
• The potential scale and significance of potential effects, including the sensitivity  

of the receiving environment (e.g. human health versus amenity effects)
• Type of pollutant (e.g. gaseous, particulate, reactive)

Many air dispersion models have been discussed or applied, and their heterogeneity makes it  
difficult to select one approach above the others. A comparison of widely used dispersion  
models is presented in Table 3 below.
 

Developer/last update

Cambridge 
Environmental 

Research Consultants 
(2020)

American  
Meteorological  

Society/Environmental 
Protection Agency 
Regulatory Model 

Improvement 
Committee (2021)

Name Full Name Application Model Type Range Important Features

ADMS

AERMOD Steady

Steady

Steady/
Unsteady

Atmospheric 
Dispersion Modeling 

System

Regulatory purposes 
and compliance 
for small towns, 

rural road networks, 
airports and industrial 

sources

Advanced 
Gaussian

model

Near-field 
dispersion

(few hundred 
meters 

or a few km)

Most frequently used 
model in the UK; 

accounts for 
downwash effects of 

nearby buildings; 
Include the effects 
of complex terrain

Gaussian 
plume 
model

American 
Meteorological 

Society/Environmental 
Protection Agency 
Regulatory Model

Near-field impacts 
from a variety of 
industrial source 
types and mobile 

sources

Short-range 
(up to 50 km)

EPA preferred dispersion 
model for many regulatory 

applications; handles 
pollutant impacts in 

both flat and complex 
terrain within the same 
modeling framework; 
treats “plume lofting” 

tracks any plume 
mass that penetrates 

into the elevated 
stable layer; includes 
dry or wet deposition

Table 3. Features and characteristics of widely used dispersion models.
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Steady

Steady

ISC3 Steady

CTDMPL
US

Improved Complex 
Terrain Dispersion 

Model

Dispersion of 
pollutants in all 

stability conditions 
for complex terrain 

in rural or urban 
area for elevated 

point sources

Gaussian 
plume model

Gaussian 
plume model

Gaussian 
model

Short-range; 
transport 
distances 
less than 

50 km

US EPA preferred model; 
includes a screening 
version (CTSCREEN);
uses critical dividing 

streamline height 
to separate flow 

in the vicinity of a 
hill into two layers

DISPERSION
21

Industrial Source 
Complex

Local Scale 
Atmospheric 

Dispersion Model

Evaluate effects 
on AQ from existing 
or planned sources 

including traffic 
and industrial 

sources

Short-range; 
horizontal 
Domain 

dimension 
up to 20 km

Widely used in Sweden; 
Includes plume rise and 
building wake effects. 

also accounts for 
plume penetration

HGSYSTEM
Dispersion models 
for ideal gases and 
hydrogen fluoride

Assessing 
accidental 

chemical releases 
with an emphasis 

on denser-than-air 
(dense gas) 

behavior

Steady/
Unsteady

Gaussian 
plume/

Gaussian 
puff

Near-field 
(AEROPLUME, 

HFPLUME, 
HEGABOX) 

and far-field 
(HEGADAS, 
PGPLUME) 
description 

of the 
dispersion 

process

Includes state-of the art 
dispersion algorithms 

for dense gases 
and treats the chemistry 
and thermodynamics of 
hydrogen fluoride (HF)

 Pollutant 
concentrations 

from a wide 
variety of sources 

associated 
with an industrial 

complex for 
regulatory purposes

Account for the following: 
complex and simple terrain, 

buoyancy-induced 
dispersion, 

plume rise as a function 
of downwind distance; 

separation of point sources, 
exponential decay 
and limited terrain 

adjustment 
the models contain 

algorithms for modeling 
the effects of aerodynamic 

downwash

Local scale, 
short term  
(ISCST3) 
or long 

term
(ISCLT3)

US EPA (1993)

Swedish  
Meteorological 

and Hydrological 
Institute

Shell Research 
Ltd.  (1994)

US EPA (2002)

Table 3. Features and characteristics of widely used dispersion models.



30

OCD
Offshore and 

Coastal Dispersion 
model

Impact of offshore 
and onshore 

emissions 
from point, area, 
or line sources 
on the AQ of 

coastal regions

Includes a treatment of 
chemical transformation 
(for NO₂), wet and dry 
deposition (for SO₂), 

plume rise, downwash 
phenomena and 

dispersion of inert 
particles

UDM-FMI

Urban Dispersion 
Modelling 

System - Finnish 
Meteorological 

Institute

Near-field impacts 
from a variety of 
industrial source 
types; impact of 
a network of line 

sources (road 
pollution)

Local scale; 
domain 

dimension 
up to  

50x50 km

CALPUFF
California 
Puff Model

Near-field impacts in 
complex flow 

(complex terrain, 
overwater transport 

and coastal 
conditions, 
light wind 

speed and calm 
wind conditions)

Unsteady

Lagrangian 
puff 

dispersion 
model

Scales of tens 
to hundreds 

of km

Includes algorithms for 
sub-grid scale effects as 

well as, longer-range 
effects; contains modules 
for near-source effects, 

building downwash, 
transitional plume rise, 

complex terrain effects, 
over-water transport, and 
coastal interaction effects

Steady

Gaussian 
model

Gaussian 
model

Short range
( up to 
few km)

EPA preferred model; 
incorporates overwater 

plume transport; 
accounts for 

building downwash 
and plume rise;

treats plume dispersion 
over complex terrain;
incorporates plume 

reflection from elevated 
terrain; accounts for 

pollutant removal

OSPM
Operational 

Street Pollution 
Model

Simulation of air 
pollution from 
traffic in urban 

streets

Steady 
state

Steady 
state

Combined
plume 

and box 
model

Local scale 
(up to 30 km)

The model can be used 
for streets with 

irregular buildings; 
speed-dependent 

expressions for 
vehicle-specific emission 

factors are supplied 
with the model.

US EPA (2000)

National 
Environmental 

Research Institute, 
Denmark

Finnish 
Meteorological 

Institute;

Sigma Research 
Corporation/TRC 

Environmental 
Corporation 

(2020)

Table 3. Features and characteristics of widely used dispersion models.
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International team  
(2019)¹²

Colorado State 
University and 

ASTER Division, 
Mission Research 

Corporation 
(2009)

US EPA (2002)

National Oceanic 
and Atmospheric 

Administration 
(NOAA) (2021)

Lagrangian 
modelUnsteady

Unsteady

Steady

Unsteady

FLEXPART

The flexible
particle 

dispersion
model

Long-range and 
mesoscale 
dispersion 

of air pollutants 
from point, 
line, area or 

volume sources

Local to global; 
it can be 
used at 

scales from 
dozens 

of metres 
to several 

hundred km

Large international user 
community; includes 

below-cloud scavenging 
and in-cloud scavenging; 

account for chemical 
reactions with the hydroxyl 

radical (OH); 
a dust mobilization 

routine has been included

HYPACT
Hybrid Particle 

and Concentration 
Transport Package

Modelling highly 
sheared flows, 
recirculating 
coastal and 

mountain/valley wind 
systems, urban heat 

islands, plume 
fumigation and 

bifurcation

Combination 
of a 

Lagrangian 
particle model 

and a 
Eulerian 

concentration
transport 

model

Local to 
regional 
scale; 

domain 
extend from 
few metres 
to hundreds 

of km

Offers great advantages 
near a source region for 
tracers when the source 
is small and irresolvable 

on the Eulerian grid; 
plume rise  

parameterizations  
and a dry deposition 

scheme have recently 
been added

HYROAD
The Hybrid 
Roadway 

Model

Traffic emissions 
and dispersion; 
operations in 

congested 
conditions

Lagrangian 
puff 

dispersion 
module

Short range 
(within 

500 m of an 
intersection)

Listed as EPA alternative 
models; has features that 
enhance traffic emissions 

modelling; capable of 
functioning as both a 

screening and a refined 
model for analyzing CO 

dispersion

HYSPLIT

Hybrid 
Single-Particle 

Lagrangian 
Integrated 
Trajectory 

model

Back-trajectory 
analysis to 

determine the 
origin of air 

masses; tracking 
and forecasting 
the release of 

radioactive 
material, wildfire 

smoke, wind-blown 
dust, pollutants

Hybrid 
between the 
Lagrangian 
approach 
and the 
Eulerian 

methodology

Local to 
global 
scales

One of the most extensively 
used atmospheric transport 

and dispersion models;
includes wet and dry  

deposition and  
radioactive decay;

integrates dust storm  
emission algorithm;  

incorporates nonlinear 
chemical transformation 
modules to simulate O₃

Table 3. Features and characteristics of widely used dispersion models.
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Steady 
state

Steady 
state

Gaussian 
model

Gaussian 
model

Near field 
dispersion 
(within a 

few  
hundred 
metres)

Recommended by 
the US-EPA;

certified by both the 
California Air Resources 
Board and the EPA for 
modeling CO or other 

inert pollutant 
concentrations from 

motor vehicles at 
roadway intersections; 

includes a traffic 
algorithm for estimating 
the number of vehicles 

queued at an 
intersection

Includes an emission 
model, a dispersion 

model, statistical 
analysis of the  

computed time series 
of concentrations  
and a graphical  

Windows-based user 
interface; dry  

deposition is included 
in the treatment of 
particulate matter; 
extensively tested 

against results from 
urban measurement  

networks

CAR-FMI

Contaminants in 
the Air from a 
Road, Finnish 

Meteorological 
Institute

Evaluation of 
atmospheric 

dispersion and 
chemical 

transformation 
from a network 

of line sources in 
local scale

Local-scale 
model;
domain 

dimension of 
up to 10 km

Titan Corporation, 
ARAP Group 

(2020)

SCIPUFF
Second-order 

closure 
integrated 

PUFF model

Modeling power 
plant plume 
dispersion; 
assessing 

radiological 
impacts 

associated with 
nuclear reactor 

accidents

Unsteady Gaussian 
puff model

Urban 
scale: 

Ranges up 
to 1,000s 

of km

SCIPUFF is the 
atmospheric 

dispersion modeling 
component of two US 

Department of 
Defense hazard 

prediction systems;
uses adaptive time 

steps and spatial grids

Caline3 California Line 
Source Model

Predict air 
pollutant 

concentrations at 
receptor locations 

downwind of 
highways located 

in relatively 
uncomplicated 

terrain

Steady
Gaussian 

plume 
model

Within  
500 m  

of roadways

US EPA alternative 
model; requires 

relatively few inputs;
flexibility in terms  

of user input 
complexity; short 

computational time

CAL3QHC
California Line 
Source Model 

with added 
capabilities

Model emissions 
from vehicles 

queuing at 
intersections;

estimation 
of total CO 

concentrations 
from both moving 

and idling 
vehicles

California Department 
of Transportation 

(CALTRANS) (1989)

California Department 
of Transportation 

(CALTRANS) (2013)

Finnish Meteorological 
Institute (FMI)

Table 3. Features and characteristics of widely used dispersion models.
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4.2   Photochemical models

4.2.1   What are photochemical models?
Photochemical models are large-scale AQ models that simulate the changes of pollutant  
concentrations in the atmosphere using a set of mathematical equations characterizing the  
chemical and physical processes in the atmosphere. These models are applied at multiple spatial 
scales, including the local, regional, national, and global scales (US EPA, 2017) (Nguyen, 2014).  
Examples of photochemical AQ models include CMAQ, CAMx, REMSAD, UAM, and RADM  
(Kukkonen et al., 2012).

4.2.2   What are photochemical models used for?
Photochemical AQ models are widely used for regulatory analysis and attainment demonstrations13  
by evaluating the efficacy of control strategies.

The major application of photochemical models has been in assessing the relative importance of 
VOC (Chen et al., 2010) and NOₓ controls in reducing ozone14 levels and to model acid deposition 
and its relation to SO2 emissions, over scales ranging from urban to regional (Gea et al., 2017).

4.2.3   Types of photochemical models
There are two types of photochemical AQ models commonly used in AQ assessments: 
the Lagrangian model and the Eulerian model. Their general characteristics are similar to their  
dispersion counterparts. 

The Lagrangian model follows the trajectories of parcels (or columns) as they are advected  
by the local wind velocity and undergo diffusion and chemical reactions (Gea et al., 2017).  
Because it is computationally efficient, early studies used the Lagrangian approach to simulate  
pollutant formation (US EPA, 2017). As discussed in section 3.3.3, Lagrangian methods face  
difficulty in accurately modelling some physical and chemical atmospheric processes.  
 
For this reason, most current operational photochemical AQ models use the 3D Eulerian grid 
approach due to its ability to accurately and fully account for these processes and thus predict 
pollutant concentration fields over the entire study domain. The Eulerian grid model numerically 
models the transport processes on a fixed three-dimensional grid that represents the study  
domain, and all chemical reactions are simulated in each cell at each time step. 
 

13 An attainment demonstration shows that a standard has been achieved as expeditiously as practicable in a given 
area before the attainment date specified for its classification.
14 O3 is not directly emitted but is formed by nonlinear reactions of NOₓ and VOCs
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4.2.4   Photochemical model components and processes
Under its hood, a photochemical model must incorporate key processes (as presented in Figure 9) 
that contribute to the spatial and temporal distributions of pollutant concentrations  
(Kukkonen et al., 2012).

Figure 9. Key processes in a photochemical model.

4.2.4.1   Horizontal and vertical advection
Advection refers to the movement of pollutant species by the mean wind velocity field, whereas 
diffusion involves sub-grid-scale turbulent mixing of pollutants, which effectively lowers pollutant 
concentrations due to dilution. Some of the key requirements for the advection schemes include 
local and global mass conservation, minimal numerical viscosity, high stability, and high numerical 
efficiency (Kukkonen et al., 2012). Among these requirements, mass conservation is particularly 
crucial in photochemical models. When the input meteorological data and the numerical advection 
scheme are not mass consistent, a mass conservation scheme must be used. In such a scheme, 
the vertical velocity component at each grid is calculated by solving the continuity equation using 
the meteorological horizontal velocities and air density inputs.

The choice of the numerical advection algorithms is critical to the speed and accuracy of the  
photochemical model, especially for long-term simulations (Chock and Winkler, 1994). As such, 
these algorithms should be tested under various conditions (Russel and Dennis, 2000).
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4.2.4.2   Horizontal and vertical turbulent diffusion
Turbulent transport in atmospheric applications is determined by complex interactions between 
meteorological conditions and topography (mechanical turbulence) and by the local daytime  
heating of the ground resulting in upward and downward vertical currents (convective turbulence). 
To supplement gross topographical features, surface “roughness” scales have been devised to 
parameterize surface characteristics according to land-use categories. Very small values are  
assigned to smooth water or ice, and increasingly higher values to grasslands, croplands,  
residential areas, and urban/industrial centres. In general, the rougher the surface, the greater  
the local turbulence (Russel, 1997). For convective turbulence, updraft and downdraft currents are 
characterized by incoming solar fluxes and surface properties such as albedo. During sunny days, 
convective turbulence dominates, and the atmospheric boundary layer is characterized by strong 
vertical mixing.

The mixing processes in turbulent flows are characterized by a wide range of mixing lengths  
associated with the cascading breaking down of eddies. To directly resolve all the length scales in 
the domain of interest, numerical solution of the Navier-Stokes equations requires a mesh so fine 
that the cost is prohibitive, especially for atmospheric flows. To reduce the cost, turbulence models 
are employed to numerically simulate flows on grids of affordable size. (Russel and Dennis, 2000). 
Turbulence interactions that are resolved by the grid are called grid-scale and those that are act at 
smaller scales are called sub-grid-scale. A popular method to describe sub-grid-scale interactions 
is the so-called turbulent closure used to solve the turbulence equations (Boussinesq, 1877).  
In particular, the first-order closure approximates any sub-grid turbulent quantity (scalar or vector) 
by using only the mean values of the dependent and independent variables. 

First-order closure can be applied locally (as in K-theory and mixing-length theory) or non-locally 
(as in transilient turbulence theory). In the K-theory approach, the turbulent flux of any variable is 
proportional to the gradient of the associated mean variable, where the proportionality constant  
is the eddy diffusivity. In this approach, the eddy diffusivity tensor (for vector quantities) is  
determined as a function of atmospheric stability class and mixing height following some  
parameterizations. However, K-theory is valid only over short distances, and cannot simulate  
counter-gradient transport, which can be important in highly convective mixed layers. Non-local 
closure methods such as transilient matrix theory and asymmetrical convective models, have been 
implemented in some photochemical modelling applications to better capture the enhanced mixing 
from convective clouds.

Smagorinsky (1963) suggested a useful formula for eddy viscosity in numerical models based on 
local derivatives of the wind speed and the model resolution. It is still used by many atmospheric 
dynamics models to model horizontal diffusion (Kukkonen et al., 2012) including ALADIN-CAMx, 
SKIRON/Dust, FARM, CAMx-AMWFG and MM5-CAMx. In contrast, MM5-CHIMERE and MM5-CAMx 
use the Medium-Range Forecast Planetary Boundary Layer (MRF PBL) scheme. Horizontal diffusion 
in the CMAQ model is based on a grid size-dependent algorithm that combines Smagorinsky’s  
approach with a term to minimize numerical diffusion (Byun and Schere, 2006).  
For vertical diffusion, the K-diffusion scheme is widely used (Kukkonen et al., 2012).
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4.2.4.3   Cloud dynamics
A key challenge facing AQ photochemical models is accounting for clouds, whose presence  
significantly affects the dynamics of pollutant transport, especially at the regional level.  
The prediction of cloud formation and dynamics continues to be challenge, even using advanced 
prognostic meteorological models that assimilate observations. In a photochemical AQ model,  
the clouds module commonly estimates the vertical water distribution, precipitation, and vertical  
motion in convective clouds (Russel, 1997).

4.2.4.4   Chemical kinetics
Atmospheric chemistry is a key component of any photochemical model. The number of chemical 
compounds and reactions is too large to be incorporated in a model. As such, simplifications that 
include key compounds and processes are essential for a computationally affordable AQ model. 
The choice of a chemical scheme is based on a trade-off between complexity, cost, and the  
questions to be answered (Kukkonen et al., 2012).

Figure 10. Chemical mechanisms.

Chemical mechanisms may be categorized based on the phases involved: homogeneous gas  
phase mechanisms, liquid phase (aqueous) mechanisms, and heterogeneous phase mechanisms  
(Russel, 1997) (see Figure 10). Homogeneous gas phase mechanisms include both organic and 
inorganic chemistry. Inorganic gas phase models are well established and are included in all  
photochemical models. Simplified organic gas phase mechanisms were developed primarily  
to study the formation of O3 and NO2 in photochemical smog and for acid deposition.
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Most photochemical AQ models (e.g. SAPRC-90, RADM/RACM) use an organic gas phase  
mechanism that lumps together most of the organic species based on molecular type (i.e. those 
with similar structure and reactivity) (Russel, 1997). AQ models that aim to predict ozone  
concentration must incorporate one of the photochemical oxidation mechanisms of VOCs in order 
to evaluate the photolysis rates. These oxidation mechanisms are available with different levels  
of detail and parametrizations (Kukkonen et al., 2012). In addition to homogeneous gas phase  
chemistry, heterogeneous chemistry can be important, particularly for acid deposition and  
aerosol formation (Kukkonen et al., 2012).

AQ models (e.g., ADOM, RADM, and STEM-II) that aim to model the evolution of aerosols and/or 
acid deposition or acidification/eutrophication, especially in situations where fog and/or clouds are 
present, implement aqueous phase chemical mechanisms. These mechanisms could include up to 
100 species and 200 reactions. However, large numbers of species and reactions are rately  
incorporated into an AQ model  due to the prohibitive computational cost (Nguyen, 2014). 

AQ models that simultaneously consider multiple phases must incorporate a thermodynamic  
mechanism in order to account for mass transfer between the phases (Russel, 1997).  
The ISORROPIA thermodynamic equilibrium scheme is used in most of the chemical mechanisms.

Recent AQ photochemical models are equipped with a mechanism compiler that enables switching 
between mechanisms. Table 4 lists the various chemical sub-models (Kukkonen et al., 2012) used 
by leading chemical weather prediction models.

Photochemical Model Comments

33 compounds; 81 reactions

RADM2

RACM

MELCHIOR

SAPRC-99

NWP-Chem

UNI-OZONE

36 compounds; 156 reactions

77 compounds; 214 reactions

80 compounds; 320 reactions 
(can be used with reduced 

mechanism)

80 compounds; 214 reactions

17 compounds; 27 gas 
phase reactions

71 compounds; 123 reactions

CAMx, CMAQ, Enviro-HIRLAM, 
LOTOS-EUROS, OPANA, RCG, SILAM

CAMx, CHEM, CMAQ, Enviro-HIRLAM, 
EURAD, OPANA, WRF-Chem

Enviro-HIRLAM, EURAD, MOCAGE

CHIMERE

CAMx, CMAQ, FARM, OPANA

Enviro-HIRLAM

EMEP model, MATCH (EMEP-MSC-W)

CBM-IV

Chemical sub-model

Table 4. Chemical sub-models used in AQ photochemical models.
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4.2.4.5   Aerosol processes and microphysics
Aerosol dynamics differ from gaseous pollutant dynamics since they involve different physical  
processes that affect the aerosol size distribution. These processes include nucleation, 
condensation, evaporation, coagulation, and deposition. Hence aerosols require special treatment 
in photochemical models. Aerosol processes and microphysics are discussed in more detail in  
Section 6.1.

4.2.4.6   Deposition  
Deposition is the process through which pollutants are removed from the atmosphere and  
deposited on soil and vegetation (causing, for example, acidification) or in water bodies  
(causing for example, eutrophication). Inaccurate accounting for deposition can results in  
significant over-prediction of atmospheric pollution levels (Kukkonen et al., 2012; Wesely and  
Hicks, 2000) in addition to under-prediction of ground level pollution forecasts. Dry and wet  
deposition are commonly key components of long-term environmental studies or assessment  
programmes (e.g. EMEP).  

4.2.4.6.1   Dry deposition
Dry deposition is a two-step process. The first step is the mechanical process by which the  
pollutant is transported to the earth’s surface. The second step is the chemical interaction  
between the pollutant and the surface. In a photochemical model, dry deposition is generally  
characterized by the dry deposition velocity (as reviewed by Wesely and Hicks (2000), defined 
such that its product with the reference concentration (at a reference height) matches the flux  
of species to the ground. The dry deposition velocity is a function of three transport resistances:  
the aerodynamic resistance in the turbulent layer (essentially species-independent),  
the resistance in the laminar fluid sublayer close to the surface (depends on gas diffusivity),  
and the surface resistance (a function of surface affinity to diffusing species).

4.2.4.6.2   Wet deposition and rain, fog, and cloud processing
 Wet deposition is process by which aerosol particles are scavenged by falling rain droplets and/
or snow particles (precipitation scavenging) or scavenged into cloud droplets or cloud ice crystals 
(in-cloud scavenging). Rain, fog and cloud droplets can absorb gases, capture or be formed on 
pollutant particles, and promote chemical reactions. As such, wet deposition is an effective means 
of cleansing the atmosphere of pollutants.

Accurate modelling of the wet deposition process requires accurate representation of the size  
distribution of water droplets and ice crystals in the clouds, in addition to accurate modelling of 
transport processes through which the particles interact with the clouds. This information is  
commonly provided by meteorological models, which are improving with time in terms of the  
certainty of their predictions (Nguyen, 2014).
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4.2.4.7   Plume modelling
A powerful technique to resolve fine-scale features (e.g. in urban areas) without incurring high 
computational cost is to use nesting. In AQ modelling, nested grids in Eulerian grid-based  
approaches allows the use of a relatively coarse grid to resolve pollutant concentration in regions 
(such as rural regions) where such concentrations do not exhibit large spatial variations, while  
using a finer grid to resolve regions (such as urban areas) where these variations are large.  
There remains, however, the challenge of accurately modelling pollution from concentrated  
sources, such as power plants, in the region covered by the coarse grid (Russel and Dennis, 2000). 
An effective way to tackle this challenge is to embed a plume model into the Eulerian grid model 
(usually called plume-in-grid or PiG models), which allows the resolution of the physico-chemical 
processes at the appropriate scales near the pollutant source. After the plume is sufficiently  
diluted, the pollutants are then mixed into the appropriate grids (Russel and Dennis, 2000).  
A few plume models have been developed and used in photochemical models. One of the first  
was the PARIS model that was used in the Urban Airshed Model (UAM).

4.2.5   Input data requirements
Regional photochemical AQ models commonly require the following categories of input: (i)  
meteorology, (ii) emissions, (iii) topography, (iv) observed atmospheric compounds  
concentrations, and (v) grid structure (Russel, 1997) (Figure 11). 

Figure 11. Input data to AQ photochemical models.
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4.2.5.1   Meteorological input 
Meteorological inputs into photochemical models, consisting of hourly velocity, temperature,  
humidity, mixing depth, and solar insulation fields, govern pollutant transport, chemical reaction 
rates and deposition fluxes (Nguyen, 2014). These and other inputs that may be required by the 
photochemical AQ model, such as cloud data (liquid water content, droplet size, etc.) and vertical 
diffusivities, are typically provided by non-hydrostatic diagnostic meteorological models coupled 
with four-dimensional data assimilation (Russel 2003).

4.2.5.2   Emissions input
Accurately describing the emissions input to a photochemical AQ model is necessary for the model 
to accurately predict the response of pollutant concentration distributions. The emissions input 
must be (Nguyen, 2014) compatible with the chemical reactions used in the model, sufficiently 
resolved in time and space, and adequately represented on the grid.

There are two categories of emissions that generally need to be characterized for input into  
AQ models: natural emissions and anthropogenic emissions. Pollutants such as PM, non-methane  
volatile organic compounds, NOₓ, ammonia, CH4, SO2, and CO are emitted from natural sources 
such as windblown dust, sea-salt particles, soil, animals, vegetation and forests. Anthropogenic 
emissions are those produced by human activity including factories, traffic, and household  
sources. Accurate description of anthropogenic emissions is key to assessing the human impact  
on AQ and the environment, especially in domains containing populated areas (Russell and  
Dennis, 2000; Kukkonen et al., 2012). While anthropogenic emissions from utilities and major 
industrial activities are typically well described, other natural and anthropogenic, mainly organic, 
emissions are coarsely represented due to the inherent difficulty in collecting their data. As such, 
emissions remain one of the major sources of uncertainties in the input to AQ models.

Emission inventories, by virtue of the way they are built, contain data that represent the domain  
of interest with a varying degree of detail, both spatially and temporally. To be used as input  
compatible with the AQ model, an emission processor is used to map the emission inventory  
to the AQ model grid. A widely used processor that integrates high-performance computing  
sparse matrix algorithms is the Sparse Matrix Operator Kernel Emissions (SMOKE) Modeling  
System. The SMOKE system, which can be used for both urban and regional applications,  
enables AQ forecasting and serves as an important tool for decision-making on air emission  
controls (Nguyen, 2014; Gea et al., 2017).

Natural emissions, mainly dust and sea-salt particles, are mostly calculated from emission models 
such as MEGAN (Model of Emissions of Gases and Aerosols from Nature) (Kukkonen et al., 2012). 
Dust emission mechanisms and models are discussed in Chapter 6. 
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4.2.5.3   Initial and lateral boundary conditions
Observed compound concentrations are needed to specify the initial and boundary conditions for 
photochemical AQ model simulations.

Data 
assimilation

Global 
observations

Local observations 
(Doppler radar, satellite, 

mesoscale, buoys) 

Initial and boundary 
conditions on model grid

Figure 12. Data assimilation is used to convert observations from different  
sources to initial and boundary conditions.

To arrive at the initial field distributions of the dependent variables, globally and locally collected 
observations are interpolated onto the grid in a physically consistent and balanced manner  
using data assimilation approaches (Kukkonen et al., 2012), such as the Kalman filter methods and 
three-dimensional (3DVAR) and four-dimensional (4DVAR) variational methods (Kalnay, 2003)  
(Figure 12). Data assimilation is now commonly used in regional AQ operational forecasting models 
and assessment models. 

In addition to initial conditions, boundary conditions are required for AQ photochemical models in 
bounded domains. The data on the boundaries are usually interpolated in time from output of a 
larger-scale model, such as a global model, available every 3 or 6 hours.

4.2.5.4   Topography 
Topography data are key for accurate modelling of near-ground pollution as it influences both  
pollutant transport and deposition.

4.2.5.5   Grid structure
Selection of the grid structure and the vertical extent of the study domains is decided by the 
particular application and the level of detail needed to adequately answer the questions, such as 
the desired spatial and temporal resolutions, the chemical compounds followed and the associated 
chemical reactions. Typically, smaller domains require smaller grid size horizontally (approximately 
1-20 km) but do not extend into the stratosphere. Regional-or continental-scale domains employ a 
larger grid size horizontally (10-50 km) but may extend vertically all the way up to the lower  
stratosphere (Kukkonen et al., 2012).  
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4.2.6   Assessment of the performance of photochemical models 
Many procedures and statistical metrics can be used to assess photochemical model performance 
across different applications, scales, and inputs. The main goal of these procedures and metrics is 
to inform regulators on model robustness and reliability, and to identify and address model  
weaknesses (Emery et al, 2017). 

US EPA proposed a four-tiered approach to evaluating the performance of photochemical models 
(Dennis et al, 2010): (1) “operational,” in which model results are quantitatively compared to  
measured data using a variety of statistical metrics; (2) “dynamic,” in which the model output is 
analyzed for various perturbations to key inputs; (3) “diagnostic,” in which each process within 
the model is analyzed separately; and (4) “probabilistic,” in which the overall model confidence is 
assessed within an ensemble15 system.

Photochemical models are usually accompanied by quantitative operational model performance 
evaluation using different statistical metrics. The model performance evaluation statistical metrics 
used across 69 published North American photochemical modelling studies is presented in  
Simon et al. (2012). The most used metrics are the normalized mean bias (signed error), normalized 
mean error (unsigned) and correlation coefficient. Emery et al. (2017) developed ozone and PM2.5 
benchmarks for these three statistical metrics for different spatial and temporal scales.  
These benchmarks can be used to identify where the results fall in the spectrum of past published 
results and hence to assess the performance of photochemical model for some applications.

4.2.7   How to choose a photochemical model
Photochemical AQ models, which predict pollutant spatio-temporal concentrations distributions by 
solving the conservation laws governing their transport, share many commonalities. To assist in 
choosing the appropriate photochemical AQ model for a given application, Table 5 lists the most 
commonly used models along with their characteristics and features.

15 The ensemble approach integrates modeling results from different AQ models. Generally, it displays better  
performance than the individual model products.
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Source attribution, 
sensitivity, and 

process analyses; 
ozone abatement 
emission control 

strategies

Urban to 
regional 
scales;

grid sizes 
range from 

4-50 km

Multiscale, 
3D Eulerian 
grid model;

two-way 
nesting grid

Multi-scale;
Urban to 
regional; 
grid size 
from 1 to 

1,000s of km

Four gas-phase mechanisms: 
CB05, CB6r2h, CB6r4 and 

SAPRC07TC; includes several 
“probing tools” for diagnostic 

and sensitivity studies; 16 
aerosol chemical species

ENVIRON 
International
Corporation

Simulates ozone, 
PM, toxic airborne 

pollutants,  
visibility, and 

acidic and nutrient 
pollutant species 
throughout the 

troposphere

3D Eulerian 
model with 

nesting 
capabilities

Multiscale: 
urban to 

hemispheric

Gas-phase chemistry can be 
simulated with the CB05, 

SAPRC-99 or RADM2  
photochemical mechanisms; 

advanced users can modify the 
existing photochemical  

mechanisms, or even add new 
ones; PM is represented  

using three lognormal  
sub-distributions, or modes; 
includes a process analysis 

(PA) module that tracks mass 
throughout all individual 

processes (reactions,  
advection, diffusion, etc.)

US-EPA

Air quality studies 
focusing on 

ozone; evaluating 
the air-quality 
changes from 

emission control 
scenarios

3D 
multilayer, 

Eulerian 
model with 

multiple 
two-way 

grid 
nesting

Name Application Model Type Range Important Features Developer

CAMx

CMAQ

REMSAD

UAM-V

CB-IV-TOX: an extension of 
version IV of the Carbon Bond 
Mechanism (CB-IV) for solving 
chemical kinetics; An aerosol 
mass distribution over eight 

bins is automatically set when 
the model is initialized  

(Sectional approach); Include 
a process analysis extensions 
and integrated reaction rates

Systems 
Applications
International

(SAI)

Simulates the 
chemistry, 

transport and 
deposition of 

airborne pollutants  
with emphasis on 
particulate matter 

(PM)

3D Eulerian  
model with 
two-way 
nesting 

capability 

Regional to 
continental 

scales; 
grid size of 
10-80 km

Two photochemical mecha-
nisms: CB-V and “micro-CB” 

(reduced-form version of 
CB-V); detailed secondary 

organic aerosol (SOA)  
treatment and improved 

performance under stagnant 
meteorological conditions

Systems 
Applications 
International

(SAI)

Table 5. Features and characteristics of widely used photochemical models.
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Name Application Model Type Range Important Features Developer

Enviro-
HIRLAM

Chemical weather 
forecasting; climate 
change modelling; 

contamination from 
volcanic eruptions, 

sand and dust 
storms and nuclear 

explosions

3D 
hydrostatic, 

online 
integrated 

Eulerian 
model with 

nesting 
capabilities 

Multiscale; 
regional to 

urban scales; 
optimal  

resolution  
2.5 km

Four mechanisms for gas-phase 
chemistry: NWP-Chem, RADM2, 
RACM and CBMZ; four aerosol 
dynamics modules: Modal CAC, 
MADE, Sectional MOSAIC and 

SALSA; accounts for all aerosol 
microphysics

Danish  
Meteorological 
Institute (DMI) 
in collaboration 

with several 
European 

universities

EURAD

Prediction of air 
pollution episodes 

and trends;
study of emission 

reduction scenarios

3D multilayer 
Eulerian 

model with 
nesting 

capabilities

Urban to 
regional 
model;

horizontal 
grid size 

typically of 
2-80 km²

Three mechanisms for 
gas-phase chemistry: RADM2, 

RACM and Euro-RADM; two 
options for aerosol dynamics 
models: MADE and SORGAM

ARIANETFARM

Episodes analysis 
and investigation of 
pollutant formation 
and accumulation 

processes;
analysis of scenarios 
and of the effects of 

regional emission 
control policies; 

pollution forecast in 
complex situations

3D Eulerian 
grid model

Urban to 
regional 
scales;

grid size 
typically 
between 

500 m and 
50 km

Two mechanisms for gas-phase 
chemistry: an updated version 

of the chemical mechanism 
EMEP-acid or SAPRC-99;  
two options for aerosol  

dynamics: aero3 or aero0; 
ISORROPIA and SORGAM 
models to include aerosol 

thermodynamics

Institut fuer 
Geophysik und 
Meteorologie

LOTOS-
EUROS

Modelling of  
pollutants  

(photo-oxidants, 
aerosols, heavy 

metals)-over 
Europe; AQ  
forecasting

3D 
Eulerian 
model

Regional to 
continental 

scales; 
standard 
horizontal 
resolution 

of 0.5 x 
0.25 

degree 
(lon-lat)

Two chemical mechanisms:  
the TNO CBM-IV scheme and 

the CBM-IV by Adelman;  
bulk scheme with several 

non-interacting size ranges  
for aerosol representation;  

the model is equipped with a 
data assimilation package with 

the ensemble Kalman  
filter technique

TNO, RIVM 
and KNMI 

Institutes; PBL 
Netherlands 

Environmental 
Assessment 

Agency

Table 5. Features and characteristics of widely used photochemical models.
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Name Application Model Type Range Important Features Developer

Swedish 
Meteorological 

and 
Hydrological 

Institute 
(SMHI)

CHIMERE

Daily forecasts of 
ozone, aerosols and 

other pollutants; 
long-term simulations 
for emission control 

scenarios

3D Multi-scale 
off-line 
Eulerian 
model

Urban to 
regional 
scales;

horizontal 
domains of 

50-5,000 km;
horizontal 

resolution of 
1-100 km

Two gas phase chemical  
mechanisms can be included:
MELCHIOR1 and MELCHIOR2; 

sectional aerosol scheme with six size 
bins (each bin internally mixed);  

all microphysical processes included;
secondary organic aerosol formation 

is considered

IPSL/LISA/ 
INERIS

MATCH

MOCAGE

Studies of tropospheric 
chemistry and ground 

level ozone;
studies of sulphur  
deposition over  

continental scales;
detailed deposition 

assessments with higher 
horizontal resolution  

(5 km) in regions

Chemical weather 
forecasting;
tracking and 

back-tracking 
of accidental 

point-source releases;
trans-boundary 

pollution assessment

3D multi-scale 
semi-lagrangian 

model

Regional to 
global scales;
typical global 
grid resolution 

of 2 × 2 
degrees and 
regional grid 
resolution of 

0.5 × 0.5 
degrees

The chemical scheme used is  
RACMOBUS; aerosols are described 
using a bulk approach with size bins 
(typically 5 to 20 bins per species)

Meteo-France

Multiscale 
three-

dimensional 
offline Eulerian 

model

Extended EMEP MSC-W model 
chemistry; bulk scheme with several 

non-interacting size ranges for 
aerosol representation;

equilibrium between particle and gas 
phase is included

Urban to 
continental 
horizontal 

scales; 
horizontal 

resolutions of 
1-50 km

Table 5. Features and characteristics of widely used photochemical models.
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Name Application Model Type Range Important Features Developer

SILAM

OPANA

AQ impact  
assessment studies 

to obtain  
government  

permission to install 
combined cycle 

power plants and 
incinerators;

real-time  
forecasting  

systems over  
cities and regions;
sensitivity study  
of dry deposition 

fluxes

3D 
non-

hydrostatic, 
prognostic 
mesoscale 

model;

Urban to 
regional 
scales;
domain 

dimensions
of 10-500 km;

horizontal 
resolution of 
1-10,000 m

CBM-IV chemical  
mechanism in short  

and long;
RADM model and  

SAPRC-99 chemical 
scheme are also  

included; modal scheme 
with three modes and  

all microphysics

Environmental 
Software and 

Modelling Group, 
Computer 

Science School, 
Technical 

University of 
Madrid (Spain)

Simulating 
episodes or 

long-term periods, 
for operational 

forecasting and for 
studying emission 

scenarios;
computes 

probabilities in the 
“inverse” mode 

of the model

Hybrid 
Eulerian 

and 
Lagrangian 

model

Global, 
regional- 
(several 

thousand 
kilometers) 

and 
mesoscale 

(50-200 Km) 
simulations; 
grid spacing 

down 
to 1 km

The main gas-phase  
chemical mechanism is 
CBM-4; bulk and ADB 

(Aerosol Dynamics Basic 
research mode only) 

schemes; both schemes 
use the user-defined  

set of bins

Finnish
Meteorological 
Institute (FMI)

WRF-
Chem

Modeling 
emission, 

transport, mixing, 
and chemical 

transformation 
of trace gases 
and aerosols 

simultaneously 
with the 

meteorology; 
chemical weather 

forecasting

3D online 
integrated 

Eulerian
model with 

nesting 
capabilities

Mesoscale 
model; 

routinely run 
at high 

resolution 
of 1–4-km 

grid 
spacing

Several choices for 
gas-phase chemical  

mechanisms including 
RADM2, RACM, CB-05 and 

CBM-Z; give choices for 
aerosol models are three 

modal models  
(MADE/SORGAM, 

MADE/VBS, MAM), one 
sectional model aerosol 

(MOSAIC) and a bulk 
aerosol module from 

GOCART

NOAA/ESRL

EMEP 
Unified 
Model

Modelling 
transboundary 
acidification, 

eutrophication, 
ground-level 
ozone and 
particulate 

matter (PM₂.₅, 
PM₁₀);

modelling 
short-term 

episodic ozone 
and long-term 

(growing 
season) ozone

Three 
dimensional 

Eulerian 
model

Regional to 
continental 

scales; 
horizontal 
resolution: 
50x50 km

Two standard chemistries, 
UNI-ACID and UNI-OZO; 

EMEP aerosol model 
(UNI-AERO) describes 
emissions, chemical 

transformation, dynamics, 
transport, and dry and wet 
deposition of atmospheric 

aerosols

Norwegian 
Meteorological 

Institute

Table 5. Features and characteristics of widely used photochemical models.
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4.3   Receptor models
 
Unlike dispersion models, receptor models16 identify and quantify the contributions from different 
pollution sources (source apportionment) by analyzing the physico-chemical characteristics of 
observations at receptor locations (Watson et al., 2002). The receptors can be fixed (indoor or  
outdoor) or follows human activities. Because they are sensitive to measurements, receptor  
models require measurements at several receptor locations and over a representative time period. 
These models are also very sensitive to the distance between source and receptor, given that the 
role of atmospheric processes is bigger for larger distances (Nguyen, 2014). 

Receptor models employ statistical tools to relate emissions to observations, albeit they abide by 
mass balance. The most widely used receptor models are Chemical Mass Balance (EPA-CMB), 
EPA-Unmix, and the Positive Matrix Factorization (PMF) (Gea et al., 2017). Key features of these 
three receptor models can be found in Nguyen (2014).

Notable studies that use receptor models include Liu et al.’s (2015a, 2015b) investigation of the 
sources and contributions of PAHs, which subsequently enabled quantification of the cancer risks 
for each source by incorporating incremental lifetime cancer risk (ILCR) values. Another study used 
PMF models to assess ILCR associated with sources of PM2.5-bound PAHs (Callén et al., 2014). 
Heo et al. (2014) employed the PMF receptor model to assess the relationship between PM2.5 and 
mortality in Seoul, Korea (Gea et al., 2017).

Recent promising trends in research on source apportionment include mixing dispersion and  
receptor modelling.

16 Dispersion “source” models and “receptor” models are complementary rather than competitive (Nguyen, 2014).
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5. Chemical weather forecasting
Chemical weather forecasting (CWF) entails predicting the chemical composition of the  
atmosphere over a short term (less than two weeks). A chemical weather forecast is the outcome 
of coupling a Meteorological model (MetM), which estimates the distributions of thermo-physical 
properties (such as velocity, temperature, pressure, humidity), with an atmospheric chemical  
transport model (CTM) that accounts for the evolution of the pollutants from emission sources  
as they undergo convection, mixing, chemical reactions, and deposition (Kukonnen et al., 2012). 

Figure 13. (A) offline model, (B) online access model, and (C) online integrated model.

The coupling between a MetM and a CTM can be either offline or online (Baklanov et al., 2013),  
as depicted in Figure 13. In offline modelling, the coupling is one way, where metrological data 
from the meteorological pre-processor is used as input to the CTM. The meteorological data could 
in the form of measurements and/or the outcome of a diagnostic model or an operational numerical 
weather prediction (NWP) model (Baklanov et al., 2013). In contrast to offline models, the coupling 
in an online model between the MetM and CTM models is two-way. There are two types of online 
CWF models: online integrated models and online access models. In an online access model, the 
coupling between MetM and CTM is a two-way exchange via a model interface on a regular and 
frequent basis. All other model aspects, such as the grid and time step, are not shared between 
the two models (Mathur et al., 2010). On the other hand, online integrated models compute the 
meteorological and chemical property fields by simultaneously solving, on the save grid and using 
the same global time step, the system of coupled equations governing the associated physical 
and chemical laws (Baklanov et al., 2013). In addition to advantages offered by the consistency 
in numerical representation in space and time, integrated models are more suitable for modelling 
feedback mechanisms such as aerosols and gas forcing on atmospheric processes.
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On the other hand, offline coupling of meteorological and AQ models is more flexible, has a lower 
computational cost, and is more suitable for a variety of studies (e.g. ensembles and operational 
activities, inverse modelling, emission scenarios analysis, and AQ management) (Korsholm, 2007).

As mentioned above, an NWP model is not only important for providing periodic weather forecasts, 
but also serves as a key component of AQ models, including those used for CWF. Most currently 
used NWP models are prognostic, non-hydrostatic,17 employ a horizontal grid spacing of less  
than 10 km, and use as the vertical coordinate the pressure coordinate or a terrain-following  
coordinate. While diagnostic models estimate the meteorological fields by interpolating, subject to 
some conservation constraints, available measurements, prognostic models predict these fields by 
solving the system of coupled equations governing the physical conservation laws. NWP models 
use microphysical parametrizations to account for physical processes that occur at the sub-grid 
scale, such as cloud and precipitation processes, boundary layers, and convection processes  
(on coarse grids) (Baklanov et al., 2013). Handling of initial and boundary conditions in NWP  
models is done in a similar manner to that in AQ models, as discussed in section 4.2.5.3.

A plethora of online and offline operational CWF weather forecast models have been developed 
and maintained by institutions around the world in order to produce daily short-term AQ forecasts. 
Some of these models have been fully operational for more than 20 years. Table 6 introduces some 
of the most commonly used weather forecast systems along with their online/offline coupled  
meteorological and chemical transport models. The countries in which these models are operated 
and maintained are also presented.

Model Name MetM Coupling Country

ALADIN CAMx Offline Austria

HIRLAM Enviro Online integrated Denmark

MATCH MATCH Offline Sweden

MM5 CAMx Offline Greece
MM5 CHIMERE Offline Greece

CMAQ Offline Spain
SKIRON/Dust ETA SKIRON Online Greece

WRF CHEM Online integrated

NMMB Online access Spain

CTM/Photochemical 
model

ALADIN-CAMx

Enviro-HIRLAM

ECMWF or
HIRLAM

WRF-Chem

BSC-mineral 
dust scheme

MM5-CAMx

United states (also used 
in Germany, UK,

Spain, Austria, Slovenia, 
Italy, etc.)

MM5/WRFMM5/WRF-CMAQ
MM5-CHIMERE

NMMB/BSC-CTM
(BSC-CNS)

Table 6. Features and characteristics of widely used chemical weather  
forecasting operational models.

17 Hydrostatic models, which are less computationally expensive, restrict the vertical acceleration to be small  
compared to gravity, which leads, according to Newton’s second law, to a vertical balance between the pressure 
force and gravity.
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6. Dust models and assimilation products
6.1   Atmospheric aerosol particles

Atmospheric aerosol particles, or  particulate matter (PM),18 are a mixture of microscopic solid or 
liquid particles with a diameter of 1 nm to 100 μm (e.g. sea salt, sulfates, black carbon, organic 
matter, and mineral dust) suspended in the air (Ukhov et al., 2020). PM2.5 and PM10 refer to  
particulate matter with a diameter of less than 2.5 μm and 10 μm respectively.

6.1.1   Impact on climate
Atmospheric aerosols play an important role in the global climate system by interacting with Earth’s 
energy budget. Aerosols19 directly interact with the energy budget by modifying the radiation  
balance through the absorption and scattering of incoming solar radiation, resulting respectively  
in warming and cooling of the surface. In addition, by acting as condensation nuclei for clouds,  
aerosols not only modify cloud properties (optical depth and albedo) but also regulate their  
formation. Hence aerosols indirectly affect Earth’s energy budget by virtue of the interaction  
of the clouds (both size and composition) with incoming solar radiation (Kim et al., 2008).

6.1.2   Impact on the environment and human life
Aerosol particle pollution is responsible for millions of premature deaths annually (WHO, 2018).  
Extended PM exposure may cause a variety of serious diseases including cardiovascular  
and respiratory diseases and lung cancer (Lelieveld et al., 2015; Ukhov et al., 2020).  
Aerosols, in the presence of SO2 and NO2, are responsible for acid rain, which erodes soil  
and degrades water quality.

6.1.3   Types and formation
Atmospheric aerosol particles originating directly from natural and anthropogenic sources are 
called primary aerosols (Figure 14). Primary aerosols from natural sources contribute most to the 
global aerosol budget, with wind-blown mineral dust as the largest contributor and sea salt from 
sea spray as the second largest. In contrast, secondary aerosols are produced by gas to particle 
conversion through oxidation of the precursor, which could be anthropogenic (NOₓ from fossil  
fuels, sulfates), natural (sulfates, VOC). Note that organic aerosols can be primary or secondary 
(POA and SOA in Figure 14) (Poschl, 2005).

About 10 per cent of total atmospheric aerosols is from anthropogenic sources. Figure 15 shows 
the average aerosol composition at two locations over a 10-year period (2001-2010). Mineral dust 
dominates due to the proximity of the two locations to the Desert.

18 Also known as particulates, atmospheric aerosol particles, atmospheric particulate matter, or suspended  
particulate matter (SPM)
19 Especially those of particles size diameter in the wavelength range of incoming solar radiation (i.e. 400–700 nm). 
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Sulphate Biomass Fossil Fuel Nitrate Sea Salt Mineral Dust

Figure 14. Primary and secondary atmospheric aerosols.

Figure 15. Pie charts showing the aerosol composition at two locations: 
Indian Ocean and West Africa (Senegal, Gambia, Guinea-Bissau). 

Biomass and fossil fuel show contribution of organic carbon and solid black carbon 
(myhre et al., 2009).
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6.1.4   Particle size distribution
In addition to concentration and composition, particle size is one of the key parameters that  
defines the role of aerosols in Earth’s energy budget, climate, atmospheric processes, and the 
impact on human health and the environment. Aerosols are typically polydisperse, i.e. the particles 
do not have the same size. Representing the particle size distribution is commonly done either 
discretely through binning or using a continuous mathematical function (log-normal distribution) 
(Mann et al., 2012). 

Three different schemes are typically used to represent the aerosol size distribution, namely:  
bulk schemes, modal schemes and sectional schemes (Kukkonen at al., 2012). In bulk schemes, 
aerosol size distribution is represented by a small number of non-interacting bins (mainly one or 
two bins such as TSP, PM2.5 and PM10). In contrast, aerosol size distribution in sectional schemes 
(Jacobson, 2005) is represented by a large number of small interacting bins each having its own 
physical and chemical properties. Furthermore, the aerosol size distribution in modal schemes 
(Whitby and McMurry, 1997) is characterized by a small number of modes where each mode is 
represented by a continuous mathematical function (log-normal distribution). Among these three 
schemes, the sectional scheme is the most expensive and also the most flexible.

The atmospheric particle size distribution can change as a result of one or more physicochemical 
process: diffusion, gravitational settling, electrical migration, nucleation, evaporation, chemical  
reaction, and coagulation. Nucleation can occur by condensation of a gas precursor onto the  
surface of existing aerosol particles (heterogeneous nucleation) or by condensation under  
super-saturation conditions (homogeneous nucleation).  

Heterogeneous nucleation and coagulation processes cause the size distribution to shift towards 
larger sizes. In contrast, homogenous nucleation and evaporation processes shift the size  
distribution towards smaller values. The evolution of the number density of particles in an aerosol 
due the aforementioned processes is mathematically described by the general dynamic equation 
for aerosols (Gelbard and Seinfeld, 1979).
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6.2   Dust assessment in GCC countries 

Noting that mineral dust constitutes approximately 75-95 per cent of total suspended particles 
(TSP) (Ukhov et al., 2020), the problem of regional and global transport of large quantities of 
airborne dust originating from deserts is of paramount importance. Half of global dust emissions 
are from the MENA (Middle East and North Africa) region (Prospero et al., 2002). In terms of dust 
generation, the Arabian Desert (the east and southern parts of the Arabian Peninsula and Oman 
desert) ranks third globally after the Sahara and the East Asian deserts (Cahill et al., 2017; Banks et 
al., 2017; Prakash et al., 2016; Farahat, 2016; Kalenderski and Stenchikov, 2016; Munir et al., 2013; 
Alghamdi et al., 2015; Lihavainen et al., 2016; Anisimov et al., 2017; Osipov and Stenchikov, 2018). 
Dust transport from these regions impacts regional climates over scales reaching thousands of 
kilometers (Fountoukis et al., 2020, Shao et al., 2011).

6.2.1   The impacts of dust on climate, environment and human life
The impacts of dust aerosols on the climate and environment include (i) radiative forcing,  
which affects the global thermal balance and subsequently all dependent physico-chemical and 
biological processes, (ii) altering cloud formation, (iii) marine primary productivity through ocean 
fertilization, (iv) changing the PM composition, and (iv) biogeochemical and hydrological cycles.  
Even though natural dust might not have direct negative effect on human health, it can indirectly 
affect the transport and formation of some pollutants by altering the atmospheric temperature  
distribution. It can also carry a large number of bacteria and fungi. Moreover, dust severely  
impacts on human resources including land and air, solar resources for renewable energy,  
telecommunication and other infrastructures, in addition to damaging crops (Fountoukis et al., 
2018b; Ahmadi Dadashi Roudbari, 2017, Li et al., 2017; Almasi et al., 2014; Goudie, 2014; Ginoux et 
al., 2012; Basart et al., 2012; Goudie, 2009; Goudie and Middleton, 2002).

6.2.2  Aerosol pollution in GCC countries
Local sources of aerosols in GCC countries, in addition to natural dust, include SO2 from  
anthropogenic sources (such as power generation, oil processing, and water desalination),  
which is photochemically converted into sulfate aerosols (Karagulian et al., 2015; Al-Taani et al., 
2019; Alharbi et al., 2015; Khodeir et al., 2012; Al-Jahdali and Bisher, 2008). A recent study using 
the WRF-Chem model showed high SO2 surface concentrations along the east and west coasts of 
the Arabian Peninsula (Ukhov et al., 2002). The contributions of other aerosols (such as black  
carbon) to PM in GCC countries were found to be of secondary importance (Randles et al., 2017). 
Dust events in the Arabian Peninsula are frequent and cause elevated PM2.5 and PM10 levels that 
exceed AQ limits in the Kingdom of Saudi Arabia (Ukhov et al., 2020).

Over the past two decades, various studies have investigated dust transport and its impact on AQ. 
Table 7 lists studies of dust events in subdomains of the MENA region and GCC countries.  
The integrated study conducted by Fountoukis et al. (2020) demonstrated that an integrated  
approach that uses the WRF-Chem model in addition to observations (AERONET, satellite and  
surface measurements) can capture the spatio-temporal evolution of a dust storm and the  
corresponding variations in aerosol optical properties.   
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Kalenderski 
et al. (2013)

January
2009 WRF-Chem Red Sea

Found that dust  
aerosols significantly 
changed balance of 
energy and nutrients  

Prakash et al. 
(2015)

4 days 
in March 

2012

WRF-Chem + 
AERONET AOD 

observations

Arabian 
Peninusla
+Red Sea

Impact on terrestrial 
and ocean 

environments

Fountoukis
et al. (2016)

Summer
2015 WRF-Chem Middle East 

including GCC PM₁₀ predictions

Anisimov 
et al. (2017) 2009-2011

CLM4 
(1km res)

Narrow 
Arabian 
Red Sea 

coastal plain 

Estimate of fine-scale 
spatial and temporal  
distribution of dust 

emissions

Kontos 
et al. (2018)

April–June 
2015

Natural 
Emission 
MOdel 

(NEMO),driven 
by the Weather 
Research and 
Forecasting 

(WRF) model,  
(6 km 

resolution)

Central 
Middle East

Assessing the  
sensitivity of dust 
modules in various 
components of the 

relevant dust  
parameterization  

in NEMO

Basart et al., 
2012 2004 BSC-

DREAM8b
MENA and 

Mediterranean

Evaluating 
BSC-DREAM8b model 

in terms of aerosol 
optical depth (AOD) 

using hourly data from 
AERONET stations and 

averaged satellite 
observations

Fountoukis 
et al., 2020

March-April
2015

WRF-Chem + 
Satellite data 
+ PM surface 

measurements 
+ AERONET 

AOD 
observations

Arabian
Peninsula

Studied impact on 
optical properties and 

surface radiation

Study Model Domain CommentsPeriod
covered

Table 7. Studies of dust events in GCC countries.
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6.3   Integrated dust models

Dust transport is a complex process encompassing the lifting mechanism, in addition to the  
meteorological mechanisms of its transport, over long distances, through the planetary boundary 
layer- into the troposphere, and its eventual deposition on the land and ocean (Liu et al., 2003). 
This process necessitated the development of equally complex integrated dust models (Shao and 
Dong, 2006) in order to be able to:

• understand and quantify dust transport processes on various time and length scales,  
including global dust cycles and reconstruction of past climates

•  predict dust storms and issue early warnings 
• carry out assessments

Integrated dust models are based on coupling monitoring form various sources with modelling  
of atmospheric and dust transport processes, in a data assimilation environment, as depicted  
in Figure 16 (Shao and Dong, 2006). The building blocks of the integrated framework are briefly  
described below.

Figure 16. Framework of an integrated system for dust monitoring, modelling and prediction.
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20 Modern-Era Retrospective analysis for Research and Applications, Version 2, implemented by the National  
Aeronautics and Space Administration, Goddard Space Flight Center (NASA-GSFC).
21 Copernicus Atmosphere Monitoring Service Operational Analysis, implemented by the European Centre  
for Medium-Range Weather Forecasts (ECMWF).

6.3.1   Dust monitoring
Observations from various dust monitors include (i) AOD data from satellites (e.g. Terra and  
Aqua satellites) equipped with MODIS (Moderate Resolution Imaging Spectrometer) and from  
ground-based networks (e.g. AERONET), (ii) aerosol volume size distribution (AVSD)  
(from AERONET) and (iii) in-situ surface PM2.5 and PM10 concentration measurements. 

The Aerosol Robotic Network (AERONET) is a global network of more than 1,000 ground-based  
sky radiometers and sun photometers used to provide column integrated aerosol optical properties  
including AOD and column-integrated AVSD data (Holben et al., 1998; Fountoukis et al., 2020; 
Dubovik and King, 2000). Currently, there are around 30 AERONET stations in the Arabian  
Peninsula.

6.3.2   Emission models
Dust emission is the outcome of complex nonlinear interaction between land surfaces and the  
adjacent meteorology (Darmenova et al., 2009). As such, spatio-temporal characterization of  
both meteorological and land surface properties is key to a consequential dust emission model.  
Many of these properties, such as hydrological processes, vegetation dynamics, and energy  
balance, are readily provided by atmospheric models. What makes dust emission modelling  
particularly challenging is that it also requires accurate characterization of the properties of the 
uppermost layer of the soil (top 2 cm), including soil moisture and the “undisturbed” soil particle 
distribution. 

Many dust emission schemes have been proposed. All proposed schemes suffer from the inability 
to account for spatio-temporal variations of scheme parameters (Shao and Dong, 2006)

In simple emission schemes, the emission rate is a function of surface wind speed, while all other 
properties are fixed (Darmenova et al., 2009; Darmenova and Sokolik, 2007; Shao and Dong, 2006). 
Intermediate schemes, used in global dust modelling, incorporate satellite observations to tune the 
scheme parameters (Shao and Dong, 2006; Ginoux et al., 2001; Woodward, 2001). Complex dust 
emission schemes are based on spectral modelling of the dust emission mechanisms (aerodynamic 
entrainment, saltation bombardment and aggregates disintegration) in wind-erosion physics  
(Shao, 2004; Shao and Dong, 2006). These schemes, however, require soil and land surface data 
that is often unavailable. 

Two widely used emission models, developed by Marticorena and Bergametti (1995) and by Shao 
et al. (1996), and implemented within the WRF framework, are described in depth in Darmenova  
et al. (2009).

6.3.3   Data assimilation
Aerosol data assimilation products enables estimation of AOD and near-surface PM concentrations 
in regions where observations are not available. They do so by assimilating available AOD and 
in-situ PM measurements (Ukhov et al., 2020). 

The most widely used integrated models that assimilate atmospheric PM are MERRA-220 (Randles 
et al., 2017; Buchard et al., 2017) and CAMS-OA21 (Inness et al., 2019; Flemming et al., 2015; Inness 
et al., 2015). These two global-scale models use emission inventories of anthropogenic pollutants, 
and as such, their accuracy deteriorates when these inventories are outdated and/or incomplete, 
as is the case in the Middle East region (Ukhov et al., 2020; McLinden et al., 2016). 
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6.3.4   Integrated operational models
All integrated operational dust models have similar structure to the one presented in Figure 16.  
The most widely used integrated operational models are (1) COAMPS (Coupled Ocean/Atmosphere 
Mesoscale Prediction System), (2) NAAPS (Navy Aerosol Analysis and Prediction System),  
(3) NMMB/MONARCH (Non-hydrostatic Multiscale Model/Multiscale Online Non-hydrostatic  
Atmosphere Chemistry Model), (4) WRF-Chem, (5) MOCAGE (Modele de Chimie Atmospherique 
a Grande Echelle), and (6) ECMWF-IFS (European Centre for Medium-Range Weather Forecasts 
Integrated Forecasting System). 

A description of these models and their characteristics is presented in Table 8

Name Description Scale Observation Operational Developer

COAMPS

NAAPS

Non-hydrostatic 
compressible 

mesoscale 
weather 

prediction system 
with nesting 
capabilities

Mesoscale 
limited 
area 

model; 
typically 

grid point 
mesh with 
about 30 
km grid 
spacing

NAVDAS: 3D  
variational data 
assimilation that 

assimilates a variety 
of observations 

including radiosonde 
data, surface  

observations from 
land and sea,  
radiances or  

temperature profiles, 
surface wind speed 
and satellite-derived 

quantities (AOD)

Operational by 
the U.S. Navy for 

short-term  
numerical 
weather 

prediction

Marine 
Meteorology 

Division 
(MMD) of the 

U.S. Naval 
Research 

Laboratory 
(NRL)

NAAPS

Global three-
dimensional 

aerosol model 
producing
144-hour 

forecasts of dust, 
smoke, sea 

salt,and 
anthropogenic/

biogenic fine 
mode particles

Global 
scale;

1080 × 540 
grid with 

1/3 degree 
spatial 

resolution 
and 42 
vertical 
levels

Two-dimensional 
variational (2D-Var) 

data assimilation 
system  

(NAVDAS-AOD) 
which incorporates 
AOT retrievals from 
MODIS to forecast 
initial conditions 

every 6 h

Operational at 
the U.S. Naval 

Research  
Laboratory 
(NRL) since  

1998

Marine 
Meteorology 

Division 
(MMD) of 
the U.S. 
Naval 

Research 
Laboratory 

(NRL)

NMMB/
MONARCH

Fully online 
multiscale 
chemical 
weather 

prediction 
system for 

regional and 
global-scale 
applications

Multiscale: 
global to 
regional

(up to 1 km) 
scales 

allowed  

Assimilation of 
MODIS Dark Target 

and Deep Blue 
observations in the 

dust aerosol 
component of 

NMMB-MONARCH 
using an 

ensemble-based 
Kalman filter 

technique

Provides  
operational  

regional mineral 
dust forecasts for 

the World  
Meteorological 
Organization 
(WHO), and  

participates in the 
WMO Sand and 

Dust Storm  
Warning Advisory 
and Assessment 

System for  
Northern  

Africa-Middle  
East-Europe

Barcelona 
Supercoputing 

Center 
(BSC-CNS) in 
collaboration 

with the NOAA's 
National 

Centers for 
Environmental 

Prediction 
(NCEP)

Table 8. Integrated operational AQ frameworks that include dust models.
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Fully operational 
in many  

countries around 
the word to 

produce daily  
(72 hours) online 

AQ forecasts 
with a horizontal 
resolution of 4 

km (e.g. in USA, 
Austria,  

Germany, UK, 
Spain, Slovenia, 

Italy)

NOAA/ESRL

3D multiscale 
semi-Lagrangian 

model used in 
chemical weather 

forecasting, 
tracking and 

back-tracking of 
accidental 

point-source 
releases and 

trans-boundary 
pollution  

assessment

Regional to 
global 
scales;
typical 

global grid 
with  

horizontal 
resolution 
of 2 × 2 
degrees 

and a 
regional 

grid  
resolution 

of 0.5 × 0.5 
degrees

A variety of  
variational  

methods (3DVAR, 
3DFGAT or 4DVAR) 

can be used to 
assimilate profiles, 
columns or surface 
measurements of 
key atmospheric 

pollutants

Operational since 
2001; provides 

72-hour  
forecasts  

including ozone, 
precursors and 

aerosols over the 
globe, Europe 

and France 

Meteo-France

ECM-
WF-IFS 
(C-IFS)

Global numerical 
weather 

prediction 
system including 

modules for 
atmospheric 
composition 
(aerosol and 
gas phase)

3D-Var and 4D-Var 
was implemented in 
ECMWF operations  
to assimilate a wide 

variety of observation 
including surface 

measurement of wind 
speed, temperature, 

species  
concentration, and 

satellite derived AOD

ECMWF and 
Météo-France 
both use IFS to 

make operational 
weather  

forecasts but 
using different 
configurations 
and resolutions

European 
Centre for 
Medium-

Range 
Weather 

Forecasts 
(ECMWF)

Can be run 
at varying 

vertical and 
horizontal 

resolutions;
highest 

horizontal 
resolution is 

9 km

MOCAGE

WRF-
Chem

3D online 
integrated 

Eulerian model 
with nesting 
capabilities 

typically used to 
model emission, 

transport, mixing, 
and chemical 

transformation of 
trace gases and 

aerosols 
simultaneously 

with the 
meteorology

Mesoscale 
model; 

routinely 
run at high 
resolution  

1-4 km grid 
spacing

The three-dimensional 
variational method 

(3D-Var) and  
the Hybrid  

RTFDDA-3DVAR 
assimilate surface 
observations and 

satellite data (AOD 
from MODIS) to the 

WRF-Chem model and 
provide improved 

initial conditions for 
the forecasting 

system

Table 8. Integrated operational AQ frameworks that include dust models.
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7. AQ models for GCC countries
The climate in the GCC region is characterized by significant spatial and temporal variations,  
due to its large-scale atmospheric circulation, diverse topography, and chemical and radiative  
processes taking place in the atmosphere (Patlakas et al., 2019). Overall, the region is mainly  
characterized by a desert-type climate with extreme heat, particularly during daytime, and low  
and infrequent rainfall, and therefore experiences some of the harshest climatological conditions 
on Earth (Farahat, 2016). In addition, the region is considered among the most important centres  
of production and emission of dust in the world (Prijith et al., 2013). In particular, the Arabian  
Desert is the third-largest source of global dust emissions after the Sahara and the East Asian  
deserts (Ukhov et al, 2020). Hence, desert dust is found in high concentrations in the atmosphere  
throughout the year, leading to diverse impacts on Earth’s energy balance. Furthermore, dust from 
the Sahara, the world’s largest source, can be transported over thousands of kilometers, affecting 
AQ in GCC countries (Fountoukis et al, 2020). Moreover, most of the region is surrounded  
by ocean, which is a source of sea salt aerosols. All these features have an important role in the 
formation of the regional climate.

GCC countries are experiencing some of the fastest growth rates in economic activity and  
energy consumption in the world due to rapidly increasing population, industrial development and  
motorization. This rapid growth is accompanied by the emission of huge quantities of air pollutants 
of different types into the atmosphere, with damaging effects on ambient AQ. Each pollutant type 
has different characteristics and physical properties. This highlights the necessity of modelling  
the transport of these air pollutants to provide governments with information that enables them  
to take preventive measures, draft policies and plan for the future. This is particularly important  
in the presence of desert dust, whose which can trap and transport particulate matter from  
anthropogenic sources in the downstream wind direction, resulting in pollutant concentrations  
that are potentially harmful to humans and the environment (EEA, 1998).

Due to the diversity of the climate, topography and pollutant characteristics in the GCC region, 
there is no single model that can answer all relevant questions. A considerable number of studies 
have been conducted to explore various aspects of pollution in the GCC countries. These aspects 
include different types of pollutants, applications and special scales.

It should be noted that there is some evidence that combustion-related PM2.5 may be more  
harmful to human health than PM2.5 from natural sources, such as dust storms (Cooke et al., 2007;  
Laden et al., 2000). Thus, the impacts of emissions from anthropogenic sources on public health 
could be greater than their contributions to total PM2.5 mass (Farahat, 2016). Since over half of the  
measured PM2.5 levels appears to be due to crustal material from natural sources (Alolayan et al., 
2013), there is growing interest in GCC countries in using AQ models that can assess the  
contributions of individual sources to overall chemical concentrations. As such, Table 9  
highlights some AQ models that possess such a capability.

Table 9 presents AQ models that have been used to answer a multitude of research questions on 
pollution transport in GCC countries. The Table also lists descriptions of the different applications 
of each model in the GCC countries as reported in previous studies in the literature.
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CALPUFF

Predicting concentrations of CO, 
NOₓ, and CO₂ released from line 

source traffic; assessing the impact 
of some pollutants emitted from 
industrial plants; assessing the 

impact of the monsoon season on 
the dispersion of some pollutants; 

modelling and analysis of hydrogen 
fluoride and non-methane organic 

compound (NMOC) dispersion

Contains modules for near-source effects, 
building downwash, transitional plume rise, 

complex terrain effects, over-water  
transport, coastal interaction effects;  

can be coupled with WRF   

Previous studies: Abdul-Wahab et al., 2011a, 
2011b, 2012, 2016, 2017, 2018, 2019, 2020; 

Abdul-Wahab and Fadlallah, 2014;  
Al-Naimi et al., 2015; Charabi et al., 2018; 

Al-Rawas et al., 2018; Deb et al., 2014  

Model Name Typical Application in GCC Advantages/Previous related studies in GCC

AERMOD

ISCST3

Studying the impact of non-reactive 
pollutants (SO₂) and the locations of 
maximum concentration around the 

vicinity of a source (power plant,  
refinery); evaluation of vehicular  
pollution levels; assessment of  

hydrogen sulfide emissions; dispersion 
and deposition estimation of fugitive 

iron particles 

Require reasonable input data and computer 
resources; results can be exported 

to Google Earth

Previous studies: Al-Baroud et al., 2012; 
Amoatey et al., 2020; Baawain et al., 2017; 

Omidvarborna et al., 2018b; Al-Jeelani, 2013; 
Abu-Eishah et al., 2014; AL-Haddad et al., 
2012; Yassin et al., 2010; Deb et al., 2014

Calculating maximum non-reactive 
pollutant (SO₂) values and their  

locations around the vicinity of a 
source (power plant, refinery);  

assessing the impacts of methane and 
non-methane hydrocarbon emissions 
from flaring activities; quantifying the 
impact on SO₂ release when changing 
fuel sulphur content; investigating the 
efficiency of existing monitoring sites

Account for complex and simple terrain, 
buoyancy-induced dispersion, plume rise 

and building downwash

Previous studies: Al-Rashidi et al, 2005; 
Abdul-Wahab et al, 2002, 2003, 2004, 2006, 

2011a, 2009; Al-Rashidi et al, 2005; 
AL-Azmi et al, 2009; Ramadan et al, 2008; 

Deb et al, 2014

Study Vehicular emissions dispersion

Able to assess the contributions of  
individual sources to overall chemical 
concentrations; can be coupled to the 

regional mesoscale model WRF
Previous studies: Munir et al., 2018

ADMS-Urban

ISCST3

ENVIMAN: 
(combination 
of AERMOD 
and OSPM)

Assessment of air pollutant  
emissions from distillation plants Previous studies: Alkatheeri et al., 2012

Model Name Typical Application in GCC Advantages/previous related studies in GCC

Table 9. AQ models used to study pollution in GCC countries.22

22 For further information on these models, please refer to Table 3 and Table 5.
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CAL3QHC

Predicting CO concentrations 
from motor vehicles near a 

roadway intersection; modelling 
the effect of fuel change  

on air quality

Recommended by US EPA; includes a 
traffic algorithm for estimating the 

number of vehicles queued  
at an intersection 

Previous studies:  Abdul-Wahab, 2004a; 
Al Adwani et al., 2004

Assess the CO pollution level 
form a line source emission

CALINE4
US EPA alternative model; requires 

relatively few inputs

Previous studies: Albassam et al., 2009

OpenAir Assessment of air pollutant 
emissions from traffic Previous studies: Hamoda et al, 2020

WRF-Chem

Assessing the impact of African 
dust; modelling typical dust 

events; modelling haboob dust 
storms; modelling dust emission; 
modelling seasonal variations and 
distributions of aerosol pollutants; 
assessing the sensitivity of dust 
schemes; modelling of surface 

ozone at regional scale

Perfectly suited for examining  
meteorology-chemistry feedbacks on local 

to global scales; five choices for aerosol 
models; several choices for gas-phase 

chemical mechanisms including RADM2, 
RACM, CB-05 and CBM-Z chemical  
mechanisms; three choices for dust  

emissions (generated during the actual 
run, no need for an emission inventory) 

Previous studies: Kalenderskti and  
Stenchikov, 2016; Anisimov et al., 2018; 

Parajuli et al., 2019; Fountoukis et al., 2018; 
Prakash et al., 2015; Shahid et al., 2021; 
Fountoukis et al., 2016; Karagulian et al., 

2019; Kontos et al., 2018;  
Kalenderski et al., 2013;

HYSPLIT

Back-trajectory analysis to  
determine the origin of air 

masses (dust storms); estimating 
PM₁₀ air concentrations from dust 

storms; clarifying the  
seasonal distributions of  

atmospheric pollutant  
concentrations  

One of the most extensively used  
atmospheric transport and dispersion 
models in the atmospheric sciences  

community; surface roughness in the 
emission model has been correlated with 
the soil properties of Kuwait, Iraq, Syria, 

Saudi Arabia, Oman and UAE
Previous studies: Yassin et al., 2018; 

Dasari et al., 2020; Ozdemir et al., 2018; 
Othman et al., 2021; Draxler et al., 2001

Table 9. AQ models used to study pollution in GCC countries.
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CHIMERE
Investigating the predictability 

of dust events; modelling of 
surface ozone  

at regional scale

Outputs from the model  
simulations have been validated 
against meteorological and AQ 
data collected from monitoring 
stations in Qatar and showed 

globally acceptable agreement
Previous studies: Beegum et al., 

2018; Mulla et al., 2009

Bsc–Dream8b
Examining the meteorological 

conditions causing  
a dust storm

MERRA‐2 Assimilation of AOD Previous studies: Parajuli et al., 2019; 
Roshan et al., 2019; Shahid et al., 2021

Chemical 
Mass Balance 

(CMB)
Determine main contributor of 
PM₁₀ and gaseous pollutants Previous studies: Al-Salem, 2008

Positive matrix 
factorization 

(PMF)

NMMB/
BSC-Dust

Assessing the impact of 
model resolution in dust 

propagation in a region with 
complex terrain

Fully online multiscale chemical 
weather prediction system for 

regional and global-scale  
applications; dust model is fully 

embedded; accounts for feedbacks 
among gases, aerosol particles  

and meteorology

Previous studies: Ozdemir et al., 2018

Identify PM₂.₅ sources and 
apportion their contributions; 

Previous studies: Alolayan et al., 
2013; Alahmad et al., 2021;  

Alghamdi et al., 2015

Comprehensive 
Air quality 
Model with 
extensions 

(CAMx);

Simulate AQ over many  
geographic scales; conduct 

source attribution, sensitivity, 
and process analyses

Includes several “probing tools”  
for diagnostic and sensitivity  

studies in a single model:
1. Source Apportionment Tool (SAT) 
to track attribution of ozone and PM 
to emissions by category and region

2. Decoupled Direct Method tools 
(DDM, HDDM) to track chemical 

sensitivity to emissions and other 
parameters by category and region

Previous studies: Basart et al., 2016

Table 9. AQ models used to study pollution in GCC countries.
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Community 
Multiscale 
Air Quality

(CMAQ)

Simulating ozone, PM, toxic 
airborne pollutants, visibility, 

and acidic and nutrient  
pollutant species throughout 
the troposphere; addressing 

the complex couplings  
among several AQ issues  

simultaneously across spatial 
scales ranging from urban to 

hemispheric (multiscale)

Includes a process analysis (PA) 
module that tracks mass throughout 
all individual processes (chemistry,  

advection, diffusion, etc.)  
and provides quantitative  

information about how each  
process affected the predicted 
hourly species concentrations

Urban Airshed 
Model Variable 
Grid (UAM-V)

AQ studies focusing on ozone;  
evaluating air quality changes from 

emission control scenarios

Includes PA extensions and integrated  
reaction rates; information can be saved on 

pollutant concentrations from each  
mechanism (advection, diffusion, deposition, 

emissions, and chemistry, on chosen grid 
areas) for each time step, allowing for an  

unprecedented level of detail in  
understanding simulated episodes

Regional 
Modeling 

System for 
Aerosols 

and Deposition 
(REMSAD)

Simulates the chemistry, transport 
(over regional scales), and deposition  

of airborne pollutants (both inert  
and chemically reactive)  

with emphasis on PM

The Particle and Precursor Tagging  
Methodology (PPTM) allows users to tag and 

track the release, transport, chemical  
transformation, and deposition of precursor 

species and toxics (sulfur, nitrogen, mercury, 
cadmium, dioxin, and lead) from emissions  

sources, source categories, or source regions 
throughout the REMSAD modelling domain

Table 9. AQ models used to study pollution in GCC countries.
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